論文の概要: Feature Based Methods Domain Adaptation for Object Detection: A Review Paper
- arxiv url: http://arxiv.org/abs/2412.17325v1
- Date: Mon, 23 Dec 2024 06:34:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:03.249822
- Title: Feature Based Methods Domain Adaptation for Object Detection: A Review Paper
- Title(参考訳): 特徴量に基づくオブジェクト検出のための領域適応法:レビュー論文
- Authors: Helia Mohamadi, Mohammad Ali Keyvanrad, Mohammad Reza Mohammadi,
- Abstract要約: ドメイン適応は、異なるデータ分布を持つターゲットドメインにデプロイされた場合、機械学習モデルの性能を向上させることを目的としている。
本総説では, 対人学習, 差分ベース, マルチドメイン, 教師学生, アンサンブル, VLM技術など, 高度なドメイン適応手法について述べる。
特に合成ドメインシフトを含むシナリオにおいて、ラベル付きデータへの依存を最小限に抑える戦略に特に注意が払われる。
- 参考スコア(独自算出の注目度): 0.6437284704257459
- License:
- Abstract: Domain adaptation, a pivotal branch of transfer learning, aims to enhance the performance of machine learning models when deployed in target domains with distinct data distributions. This is particularly critical for object detection tasks, where domain shifts (caused by factors such as lighting conditions, viewing angles, and environmental variations) can lead to significant performance degradation. This review delves into advanced methodologies for domain adaptation, including adversarial learning, discrepancy-based, multi-domain, teacher-student, ensemble, and VLM techniques, emphasizing their efficacy in reducing domain gaps and enhancing model robustness. Feature-based methods have emerged as powerful tools for addressing these challenges by harmonizing feature representations across domains. These techniques, such as Feature Alignment, Feature Augmentation/Reconstruction, and Feature Transformation, are employed alongside or as integral parts of other domain adaptation strategies to minimize domain gaps and improve model performance. Special attention is given to strategies that minimize the reliance on extensive labeled data and using unlabeled data, particularly in scenarios involving synthetic-to-real domain shifts. Applications in fields such as autonomous driving and medical imaging are explored, showcasing the potential of these methods to ensure reliable object detection in diverse and complex settings. By providing a thorough analysis of state-of-the-art techniques, challenges, and future directions, this work offers a valuable reference for researchers striving to develop resilient and adaptable object detection frameworks, advancing the seamless deployment of artificial intelligence in dynamic environments.
- Abstract(参考訳): 転送学習の重要な分野であるドメイン適応は、異なるデータ分布を持つターゲットドメインにデプロイされた場合の機械学習モデルの性能向上を目的としている。
これは特にオブジェクト検出タスクにおいて重要であり、(照明条件、視角、環境変動などの要因によって)ドメインシフトによってパフォーマンスが著しく低下する可能性がある。
本研究は, 対人学習, 差分ベース, マルチドメイン, 教師学生, アンサンブル, VLM技術など, ドメイン適応のための先進的な手法を考察し, ドメインギャップの低減とモデルロバスト性の向上に有効性を強調した。
ドメイン間の特徴表現を調和させることによって、これらの課題に対処するための強力なツールとして、機能ベースのメソッドが登場した。
機能アライメント(Feature Alignment)、機能拡張/再構成(Feature Augmentation/Reconstruction)、機能変換(Feature Transformation)といったこれらのテクニックは、ドメインギャップを最小化し、モデルパフォーマンスを改善するために、他のドメイン適応戦略の不可欠な部分として、あるいはそれと一緒に使用される。
ラベル付きデータへの依存を最小限に抑え、ラベルなしデータを使用する戦略には特に注意が払われる。
自律運転や医用画像などの分野での応用を探求し、多種多様な複雑な環境で信頼性の高い物体検出を実現するために、これらの手法の可能性を示す。
最先端の技術、課題、今後の方向性を徹底的に分析することによって、この研究は、レジリエントで適応可能なオブジェクト検出フレームワークを開発し、動的環境における人工知能のシームレスな展開を推進しようとしている研究者に貴重な参考を提供する。
関連論文リスト
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
教師なしドメイン適応セグメンテーションは、それらのドメインのラベル付きデータに頼ることなく、ターゲットドメイン上のモデルのセグメンテーション精度を向上させることを目的としている。
ソースドメイン(ラベル付きデータが利用可能な場所)とターゲットドメイン(ラベルなしデータのみが存在する場所)の特徴表現の整合を図る。
論文 参考訳(メタデータ) (2024-07-24T08:53:29Z) - Evaluating the Effectiveness of Video Anomaly Detection in the Wild: Online Learning and Inference for Real-world Deployment [2.1374208474242815]
Video Anomaly Detection (VAD) は、監視から医療まで幅広い応用の鍵となる、ビデオストリームにおける異常な活動を特定する。
実生活環境でのVADに取り組むことは、人間の行動の動的な性質、環境の変化、ドメインシフトによって大きな課題となる。
オンライン学習は、モデルを新しい情報に継続的に適応させることによって、この問題を軽減するための潜在的戦略である。
論文 参考訳(メタデータ) (2024-04-29T14:47:32Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
脳波信号による脳-コンピュータインタフェース(aBCI)の不安定性
本稿では,メタラーニングに基づくメタドメイン適応手法を提案する。
提案手法は,パブリックなaBICsデータセットの実験において有効であることが示されている。
論文 参考訳(メタデータ) (2023-10-20T23:44:34Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Gradient Regularized Contrastive Learning for Continual Domain
Adaptation [86.02012896014095]
本稿では,ラベル付きソースドメインと非ラベル付きターゲットドメインのシーケンスでモデルを提示する連続的なドメイン適応の問題について検討する。
障害を解決するため,グラディエント正規化コントラスト学習(GRCL)を提案する。
Digits、DomainNet、Office-Caltechベンチマークの実験は、我々のアプローチの強力なパフォーマンスを示しています。
論文 参考訳(メタデータ) (2021-03-23T04:10:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。