論文の概要: Neural-MCRL: Neural Multimodal Contrastive Representation Learning for EEG-based Visual Decoding
- arxiv url: http://arxiv.org/abs/2412.17337v1
- Date: Mon, 23 Dec 2024 07:02:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:01.850124
- Title: Neural-MCRL: Neural Multimodal Contrastive Representation Learning for EEG-based Visual Decoding
- Title(参考訳): ニューラルMCRL:脳波に基づく視覚復号のためのニューラルマルチモーダルコントラスト表現学習
- Authors: Yueyang Li, Zijian Kang, Shengyu Gong, Wenhao Dong, Weiming Zeng, Hongjie Yan, Wai Ting Siok, Nizhuan Wang,
- Abstract要約: 脳波(EEG)を用いた脳活動からの神経視覚表現のデコードは、脳-機械界面(BMI)の進行に不可欠である
既存の手法は、しばしばモダリティ内の意味的一貫性と完全性を見落とし、モダリティ間の効果的なセマンティックアライメントを欠いている。
本稿では,セマンティックブリッジとクロスアテンション機構によるマルチモーダルアライメントを実現する新しいフレームワークであるNeural-MCRLを提案する。
- 参考スコア(独自算出の注目度): 2.587640069216139
- License:
- Abstract: Decoding neural visual representations from electroencephalogram (EEG)-based brain activity is crucial for advancing brain-machine interfaces (BMI) and has transformative potential for neural sensory rehabilitation. While multimodal contrastive representation learning (MCRL) has shown promise in neural decoding, existing methods often overlook semantic consistency and completeness within modalities and lack effective semantic alignment across modalities. This limits their ability to capture the complex representations of visual neural responses. We propose Neural-MCRL, a novel framework that achieves multimodal alignment through semantic bridging and cross-attention mechanisms, while ensuring completeness within modalities and consistency across modalities. Our framework also features the Neural Encoder with Spectral-Temporal Adaptation (NESTA), a EEG encoder that adaptively captures spectral patterns and learns subject-specific transformations. Experimental results demonstrate significant improvements in visual decoding accuracy and model generalization compared to state-of-the-art methods, advancing the field of EEG-based neural visual representation decoding in BMI. Codes will be available at: https://github.com/NZWANG/Neural-MCRL.
- Abstract(参考訳): 脳波(EEG)に基づく脳活動からの神経視覚的表現のデコードは、脳-機械界面(BMI)の進行に不可欠であり、神経感覚回復の変革的可能性を持っている。
マルチモーダルコントラスト表現学習(MCRL)は、ニューラルデコーディングにおいて有望であるが、既存の手法は、モーダルのセマンティック一貫性と完全性を見落とし、モーダル間の効果的なセマンティックアライメントを欠いていることが多い。
これにより、視覚神経応答の複雑な表現をキャプチャする能力が制限される。
意味的ブリッジングと横断的アテンション機構によって多モーダルアライメントを実現する新しいフレームワークであるNeural-MCRLを提案する。
我々のフレームワークは、スペクトルパターンを適応的にキャプチャし、主題固有の変換を学ぶEEGエンコーダであるNESTA(Neural Encoder with Spectral-Temporal Adaptation)も備えています。
実験により,BMIにおける脳波に基づく神経視覚表現復号の分野を進展させ,最先端の手法と比較して,視覚復号精度とモデル一般化の大幅な向上が示された。
コードは、https://github.com/NZWANG/Neural-MCRL.comで入手できる。
関連論文リスト
- Towards Neural Foundation Models for Vision: Aligning EEG, MEG, and fMRI Representations for Decoding, Encoding, and Modality Conversion [0.11249583407496218]
本稿では, コントラスト学習を活用することで, 脳活動のマルチモーダル表現に対して, 神経データと視覚刺激を協調させる基礎モデルを構築するための新しいアプローチを提案する。
脳波(EEG)、脳磁図(MEG)、fMRIデータを用いた。
われわれのフレームワークの能力は、ニューラルデータから視覚情報をデコードし、画像をニューラル表現にエンコードし、ニューラルモダリティ間の変換という3つの重要な実験によって実証される。
論文 参考訳(メタデータ) (2024-11-14T12:27:27Z) - Visual Neural Decoding via Improved Visual-EEG Semantic Consistency [3.4061238650474657]
EEG機能をCLIP埋め込みスペースに直接マッピングするメソッドは、マッピングバイアスを導入し、セマンティックな矛盾を引き起こす可能性がある。
最適アライメントを容易にするために,これらの2つのモードのセマンティックな特徴を明示的に抽出する Visual-EEG Semantic Decouple Framework を提案する。
提案手法は,ゼロショットニューラルデコードタスクの最先端化を実現する。
論文 参考訳(メタデータ) (2024-08-13T10:16:10Z) - Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
認知神経科学において広く用いられる技術として機能的磁気共鳴イメージング(fMRI)は、視覚知覚の過程における人間の視覚野の神経活動を記録することができる。
本研究では,SOTAビジョンモデルCORnetに基づくモデルであるReAlnet-fMRIを提案する。
fMRIを最適化したReAlnet-fMRIは、CORnetと制御モデルの両方においてヒトの脳との類似性が高く、また、内・内・対モダリティモデル脳(fMRI、EEG)も高い類似性を示した。
論文 参考訳(メタデータ) (2024-07-15T03:31:42Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Neuro-Vision to Language: Enhancing Brain Recording-based Visual Reconstruction and Language Interaction [8.63068449082585]
非侵襲的な脳記録の復号化は、人間の認知の理解を深める鍵となる。
本研究では,視覚変換器を用いた3次元脳構造と視覚的意味論を統合した。
マルチモーダル大モデル開発を支援するために,fMRI画像関連テキストデータを用いたfMRIデータセットを改良した。
論文 参考訳(メタデータ) (2024-04-30T10:41:23Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
本稿では,人間の脳を模倣する人工ニューラルネットワークVISIONを提案する。
VISIONは、人間の血行動態の反応をfMRIボクセル値として、最先端の性能を超える精度で45%の精度で予測することに成功した。
論文 参考訳(メタデータ) (2023-09-26T15:38:26Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIPはタスクに依存しないfMRIベースの脳復号モデルである。
脳の活動、画像、およびテキストの間のモダリティギャップを埋める。
BrainCLIPは、高い意味的忠実度で視覚刺激を再構築することができる。
論文 参考訳(メタデータ) (2023-02-25T03:28:54Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
本研究では,高画質,多彩で現実的な拡散重み付き磁気共鳴画像が深部生成モデルを用いて合成可能であることを示す。
Introspective Variational AutoencoderとStyle-Based GANの2つのネットワークを医療分野におけるデータ拡張の資格として提示する。
論文 参考訳(メタデータ) (2020-06-24T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。