論文の概要: Three-Class Text Sentiment Analysis Based on LSTM
- arxiv url: http://arxiv.org/abs/2412.17347v1
- Date: Mon, 23 Dec 2024 07:21:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:57.152030
- Title: Three-Class Text Sentiment Analysis Based on LSTM
- Title(参考訳): LSTMに基づく3クラステキスト知覚分析
- Authors: Yin Qixuan,
- Abstract要約: 本稿では,Long Short-Term Memory (LSTM) ネットワークを用いたWeiboコメントの3クラス感情分類手法を提案する。
実験の結果、優れた性能を示し、精度は98.31%、F1スコアは98.28%に達した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Sentiment analysis is a crucial task in natural language processing (NLP) with applications in public opinion monitoring, market research, and beyond. This paper introduces a three-class sentiment classification method for Weibo comments using Long Short-Term Memory (LSTM) networks to discern positive, neutral, and negative sentiments. LSTM, as a deep learning model, excels at capturing long-distance dependencies in text data, providing significant advantages over traditional machine learning approaches. Through preprocessing and feature extraction from Weibo comment texts, our LSTM model achieves precise sentiment prediction. Experimental results demonstrate superior performance, achieving an accuracy of 98.31% and an F1 score of 98.28%, notably outperforming conventional models and other deep learning methods. This underscores the effectiveness of LSTM in capturing nuanced sentiment information within text, thereby enhancing classification accuracy. Despite its strengths, the LSTM model faces challenges such as high computational complexity and slower processing times for lengthy texts. Moreover, complex emotional expressions like sarcasm and humor pose additional difficulties. Future work could explore combining pre-trained models or advancing feature engineering techniques to further improve both accuracy and practicality. Overall, this study provides an effective solution for sentiment analysis on Weibo comments.
- Abstract(参考訳): 感性分析は自然言語処理(NLP)において重要な課題であり、世論監視や市場調査などに応用されている。
本稿では,Long Short-Term Memory (LSTM) ネットワークを用いたWeiboコメントに対する3種類の感情分類手法を提案する。
深層学習モデルとしてのLSTMは、テキストデータの長距離依存関係のキャプチャに優れており、従来の機械学習アプローチよりも大きなメリットがある。
Weiboコメントテキストの事前処理と特徴抽出により,LSTMモデルは正確な感情予測を実現する。
実験結果は優れた性能を示し、精度は98.31%、F1スコアは98.28%であり、特に従来のモデルやその他のディープラーニング手法よりも優れていた。
これにより、テキスト内のニュアンスされた感情情報をキャプチャするLSTMの有効性が示され、分類精度が向上する。
その強みにもかかわらず、LSTMモデルは、高い計算複雑性や長いテキストの処理時間が遅いといった課題に直面している。
さらに、皮肉やユーモアのような複雑な感情表現は、さらなる困難を引き起こす。
将来の研究は、事前訓練されたモデルを組み合わせることや、精度と実用性の両方を改善するために機能エンジニアリングの技術を前進させることを検討できる。
本研究は,Weiboコメントに対する感情分析に有効なソリューションを提供する。
関連論文リスト
- A hybrid transformer and attention based recurrent neural network for robust and interpretable sentiment analysis of tweets [0.3495246564946556]
既存のモデルは言語的多様性、一般化可能性、説明可能性に関する課題に直面している。
本稿では,トランスフォーマーアーキテクチャ,アテンション機構,BiLSTMネットワークを統合したハイブリッドフレームワークTRABSAを提案する。
感情分析ベンチマークのギャップを埋め、最先端の精度を確保します。
論文 参考訳(メタデータ) (2024-03-30T09:20:43Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
大規模言語モデル(LLM)は、様々な自然言語タスクで顕著なパフォーマンスを実現している。
しかし、その大きなサイズは推論を遅く、計算的に高価にする。
最終層の生成能力に影響を与えることなく、これらの層が「良い」生成能力を得ることができることを示す。
論文 参考訳(メタデータ) (2023-10-28T04:07:58Z) - GLS-CSC: A Simple but Effective Strategy to Mitigate Chinese STM Models'
Over-Reliance on Superficial Clue [51.713301130055065]
STMモデルにおける表面的手がかりの影響を解析・緩和する。
本稿では,GLS-CSC (Superficial Clue) を含む学習サンプルをトレーニング戦略として提案する。
GLS-CSCは,中国のSTMモデルの堅牢性と一般化性の向上の観点から,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-09-08T07:10:57Z) - Adversarial Capsule Networks for Romanian Satire Detection and Sentiment
Analysis [0.13048920509133807]
サファイア検出と感情分析は、自然言語処理タスクを集中的に探求している。
研究資源が少ない言語では、文字レベルの逆数過程に基づく人工的な例を生成する方法がある。
本研究では, よく知られたNLPモデルの改良を行い, 対角訓練とカプセルネットワークについて検討する。
提案したフレームワークは2つのタスクの既存の手法より優れており、99.08%の精度が達成されている。
論文 参考訳(メタデータ) (2023-06-13T15:23:44Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion
Synthesis [59.465092047829835]
我々は、テキストから3次元の人間の動きを抽出する簡単な方法であるTMRを提案する。
提案手法は,最先端のテキスト-モーション合成モデルTEMOSを拡張した。
運動生成損失の維持は、対照的な訓練とともに、優れた性能を得るためには不可欠であることを示す。
論文 参考訳(メタデータ) (2023-05-02T17:52:41Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
本稿では,REDAffectiveLMと呼ばれる深層学習モデルを用いて,短文文書からの読み手感情検出のための新しい手法を提案する。
コンテクストに特化してリッチ表現に影響を与え, リッチBi-LSTM+Attentionに影響を及ぼすタンデムにおいて, トランスフォーマーに基づく事前学習言語モデルを用いることで, リッチ表現に影響を及ぼす。
論文 参考訳(メタデータ) (2023-01-21T19:28:25Z) - Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with
DeBERTa [23.00810941211685]
Aspect-Based Sentiment Analysis (ABSA)は、感情分析の分野におけるきめ細かいタスクである。
アスペクトベース感性分析問題を解決するための最近のDeBERTaモデル
論文 参考訳(メタデータ) (2022-07-06T03:50:31Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
我々は,CSL(Cross-Situationnal Learning)タスクでESNとLSTMを訓練した。
その結果, 性能比較, 内部力学解析, 潜伏空間の可視化の3種類が得られた。
論文 参考訳(メタデータ) (2020-12-03T08:32:01Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。