論文の概要: Efficient fine-tuning methodology of text embedding models for information retrieval: contrastive learning penalty (clp)
- arxiv url: http://arxiv.org/abs/2412.17364v1
- Date: Mon, 23 Dec 2024 07:55:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:19.939187
- Title: Efficient fine-tuning methodology of text embedding models for information retrieval: contrastive learning penalty (clp)
- Title(参考訳): 情報検索のためのテキスト埋め込みモデルの効率的な微調整手法:コントラスト学習ペナルティ(clp)
- Authors: Jeongsu Yu,
- Abstract要約: 本研究では,事前学習したテキスト埋め込みモデルの情報検索性能を向上させるために,効率的な微調整手法を提案する。
提案手法は,文書検索タスクにおける既存手法よりも大幅な性能向上を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Text embedding models play a crucial role in natural language processing, particularly in information retrieval, and their importance is further highlighted with the recent utilization of RAG (Retrieval- Augmented Generation). This study presents an efficient fine-tuning methodology encompassing data selection, loss function, and model architecture to enhance the information retrieval performance of pre-trained text embedding models. In particular, this study proposes a novel Contrastive Learning Penalty function that overcomes the limitations of existing Contrastive Learning. The proposed methodology achieves significant performance improvements over existing methods in document retrieval tasks. This study is expected to contribute to improving the performance of information retrieval systems through fine-tuning of text embedding models. The code for this study can be found at https://github.com/CreaLabs/Enhanced-BGE-M3-with-CLP-and-MoE, and the best-performing model can be found at https://huggingface.co/CreaLabs.
- Abstract(参考訳): テキスト埋め込みモデルは,特に情報検索において,自然言語処理において重要な役割を担い,最近のRAG(Retrieval-Augmented Generation)の利用によってその重要性が強調されている。
本研究では、事前学習したテキスト埋め込みモデルの情報検索性能を高めるために、データ選択、損失関数、モデルアーキテクチャを含む効率的な微調整手法を提案する。
特に,既存のコントラスト学習の限界を克服する新しいコントラスト学習ペナルティ関数を提案する。
提案手法は,文書検索タスクにおける既存手法よりも大幅な性能向上を実現する。
本研究は,テキスト埋め込みモデルの微調整による情報検索システムの性能向上に寄与することが期待される。
この研究のコードはhttps://github.com/CreaLabs/Enhanced-BGE-M3-with-CLP-and-MoEで、最高のパフォーマンスモデルはhttps://huggingface.co/CreaLabsで見ることができる。
関連論文リスト
- Unsupervised Data Validation Methods for Efficient Model Training [0.0]
自然言語処理(NLP)、テキスト音声処理(TTS)、音声テキスト処理(STT)、視覚言語モデル(VLM)は大規模なデータセットに大きく依存している。
本研究では,「品質データ」の定義,適切なデータ生成方法の開発,モデルトレーニングへのアクセシビリティ向上など,重要な分野について検討する。
論文 参考訳(メタデータ) (2024-10-10T13:00:53Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Reinforcement Learning with Generative Models for Compact Support Sets [10.041289551532804]
基礎モデルの制御手段として強化学習を利用する枠組みを提案する。
我々のフレームワークは優れた結果をもたらし、追加のラベル付けやデータコストを使わずにかなりのマージンで分類精度を向上した。
論文 参考訳(メタデータ) (2024-04-25T02:48:16Z) - LLM-Augmented Retrieval: Enhancing Retrieval Models Through Language Models and Doc-Level Embedding [2.0257616108612373]
本稿では,大規模言語モデル拡張によるモデルに依存しないドキュメントレベルの埋め込みフレームワークを提案する。
我々は広く利用されている検索モデルの有効性を大幅に改善することができた。
論文 参考訳(メタデータ) (2024-04-08T19:29:07Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
本稿では,メモリ模倣メタラーニング(MemIML)手法を提案する。
本手法の有効性を証明するために理論的解析を行った。
論文 参考訳(メタデータ) (2022-03-22T12:41:55Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
本研究では,事前学習した Transformer ベースの言語モデル BERT の微調整手法について検討する。
実験結果から,モデルの知識獲得度を最大化することで,モデル性能の優位性を示す。
我々は、微調整中の言語モデルの凍結層の利点を分析し、トレーニング可能なパラメータの数を減らす。
論文 参考訳(メタデータ) (2020-12-04T08:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。