論文の概要: Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement
- arxiv url: http://arxiv.org/abs/2412.17387v1
- Date: Mon, 23 Dec 2024 08:40:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:18.593966
- Title: Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement
- Title(参考訳): Singular Value Scaling: プレンドウェイトリファインメントによる効率的な生成モデル圧縮
- Authors: Hyeonjin Kim, Jaejun Yoo,
- Abstract要約: 生成モデルは、しばしば支配的な特異ベクトルを示し、微調整効率を阻害し、最適以下の性能をもたらす。
SVS(Singular Value Scaling, Singular Value Scaling)は, 刈り込み重みを精製する多用途手法である。
SVSは、追加のトレーニングコストなしでモデルタイプ間の圧縮性能を改善する。
- 参考スコア(独自算出の注目度): 9.454314879815337
- License:
- Abstract: While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular_Value_Scaling.
- Abstract(参考訳): プルーニング法は訓練コストを伴わずにモデル性能を効果的に維持するが、多くの場合、プルーニングウェイトがその後の微調整や蒸留に与える影響を見越して重要な接続を維持することにのみ焦点をあてる。
さらに、生成モデルのためのほとんどの圧縮技術は、主にGAN向けに開発され、StyleGANのような特定のアーキテクチャに適合し、拡散モデルを圧縮する研究が始まったばかりである。
さらに、これらのメソッドは GAN や Diffusion モデルにのみ適用され、両方のモデルタイプにまたがるアプローチの必要性を強調します。
本稿では,2つのモデルタイプに適用可能な,刈り込み重みを精製する汎用的手法であるSVSについて紹介する。
解析の結果, 刈り込み重みはしばしば支配的な特異ベクトルを呈し, 微調整効率を阻害し, ランダム初期化と比較して準最適性能をもたらすことが明らかとなった。
本手法は, プルーニング重量の特異値間の相違を最小化し, 微調整プロセスを改善することにより, 重量初期化を促進させる。
このアプローチは圧縮されたモデルを優れた解へと導くだけでなく、微調整を著しく高速化する。
StyleGAN2、StyleGAN3、DDPMの大規模な実験は、SVSが追加のトレーニングコストなしでモデルタイプ間の圧縮性能を改善することを示した。
私たちのコードは、https://github.com/LAIT-CVLab/Singular_Value_Scalingで利用可能です。
関連論文リスト
- DiP-GO: A Diffusion Pruner via Few-step Gradient Optimization [22.546989373687655]
本稿では,よりインテリジェントで微分可能なプルーナーを用いて,効率的な拡散モデルを導出する新しいプルーニング法を提案する。
提案手法はSD-1.5の4.4倍の高速化を実現し,従来の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T12:18:24Z) - Single Parent Family: A Spectrum of Family Members from a Single Pre-Trained Foundation Model [20.054342930450055]
本稿では,大規模言語モデルの圧縮に適したプログレッシブ・ローランク分解法(PLRD)を提案する。
PLRDは計算オーバーヘッドとエネルギー消費を大幅に削減する。
この結果から,PLRD は LLM の効率的なスケーリングのための新しい標準となる可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-28T15:27:57Z) - Model Stock: All we need is just a few fine-tuned models [34.449901046895185]
本稿では,大規模な事前学習モデルに対する効率的な微調整手法を提案し,強力な分布内分散(ID)と分布外分散(OOD)性能を提供する。
最終的な重量を達成するために、はるかに少ないモデルを採用するが、精度は優れている。
事前学習型CLIPアーキテクチャに基づく微調整モデルを用いたモデルストックの有効性を示す。
論文 参考訳(メタデータ) (2024-03-28T15:57:20Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
モデル並列分散トレーニングセットアップにおけるアクティベーションと勾配の同時圧縮が収束に与える影響について検討する。
グラデーションはアクティベーションよりも軽度な圧縮速度を必要とする。
実験では、TopKでトレーニングされたモデルが、推論中に圧縮も適用された場合にのみ正常に動作することが示されている。
論文 参考訳(メタデータ) (2024-01-15T15:54:54Z) - Finding the SWEET Spot: Analysis and Improvement of Adaptive Inference
in Low Resource Settings [6.463202903076821]
トレーニングデータに制限がある場合、適応推論の2つの主要なアプローチであるEarly-ExitとMulti-Modelを比較した。
Early-Exitは、マルチモデルアプローチのオーバーヘッドのために、より高速なトレードオフを提供する。
本稿では,SWEETを提案する。SWEETは,各分類器に独自のモデル重みの集合を割り当てる初期出力微調整法である。
論文 参考訳(メタデータ) (2023-06-04T09:16:39Z) - Gradient-based Intra-attention Pruning on Pre-trained Language Models [21.444503777215637]
本稿では,GRAIN (Gradient-based intra-attention pruning) を用いた構造化プルーニング手法を提案する。
GRAINは、アテンション内構造を検査し、プーンし、構造探索空間を大きく拡張し、より柔軟なモデルを可能にする。
GLUE、SQuAD、CoNLL 2003の実験では、GRAINは特に高頻度で他の手法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2022-12-15T06:52:31Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - Block Pruning For Faster Transformers [89.70392810063247]
小型モデルと高速モデルの両方を対象としたブロックプルーニング手法を提案する。
このアプローチは、アテンションヘッドのような基盤となるモデルの完全なコンポーネントを抽出することを学ぶ。
論文 参考訳(メタデータ) (2021-09-10T12:46:32Z) - AdamP: Slowing Down the Slowdown for Momentum Optimizers on
Scale-invariant Weights [53.8489656709356]
正規化技術は現代の深層学習の恩恵である。
しかし、運動量を導入することで、スケール不変の重みに対する効果的なステップサイズが急速に小さくなることがしばしば見過ごされる。
本稿では,この2つの材料の組み合わせが,有効ステップサイズと準最適モデル性能の早期劣化につながることを検証した。
論文 参考訳(メタデータ) (2020-06-15T08:35:15Z) - Dynamic Model Pruning with Feedback [64.019079257231]
余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に到達可能であることを示す。
論文 参考訳(メタデータ) (2020-06-12T15:07:08Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。