論文の概要: BrainMAP: Learning Multiple Activation Pathways in Brain Networks
- arxiv url: http://arxiv.org/abs/2412.17404v1
- Date: Mon, 23 Dec 2024 09:13:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:04.099412
- Title: BrainMAP: Learning Multiple Activation Pathways in Brain Networks
- Title(参考訳): BrainMAP:脳ネットワークにおける複数の活性化経路の学習
- Authors: Song Wang, Zhenyu Lei, Zhen Tan, Jiaqi Ding, Xinyu Zhao, Yushun Dong, Guorong Wu, Tianlong Chen, Chen Chen, Aiying Zhang, Jundong Li,
- Abstract要約: 本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
- 参考スコア(独自算出の注目度): 77.15180533984947
- License:
- Abstract: Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks. Our code is provided at https://github.com/LzyFischer/Graph-Mamba.
- Abstract(参考訳): 機能的磁気共鳴画像(fMRI)は、機能的ゆらぎと人間の行動の関係についての洞察を提供するため、人間の脳活動を研究するために一般的に用いられる。
脳活動の分析と理解を深めるために、グラフニューラルネットワーク(GNN)はfMRIデータから導かれる機能的結合性(FC)の分析に広く応用されている。
しかし、人間の脳では、複雑なタスクの実行は通常、グラフを横断する経路として表現できる特定の経路の活性化を伴う。
このように、従来のGNNは、複数の経路の長距離依存のため、これらの経路から学ぶのに苦労している。
これらの課題に対処するため,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介した。
BrainMAPはシーケンシャルモデルを活用して、シーケンシャル化された脳領域間の長距離相関を識別し、Mixture of Experts (MoE)に基づくアグリゲーションモジュールを組み込んで、複数の経路から学習する。
包括的な実験は、BrainMAPの優れたパフォーマンスを強調します。
さらに,本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
私たちのコードはhttps://github.com/LzyFischer/Graph-Mamba.orgにある。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
本稿では、障害特異的な関心領域(ROI)と顕著なつながりを分析するための解釈可能なフレームワークを提案する。
提案するフレームワークは,脳ネットワーク指向の疾患予測のためのバックボーンモデルと,グローバルに共有された説明生成装置の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2022-06-30T08:02:05Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Can the brain use waves to solve planning problems? [62.997667081978825]
このような課題を解くニューラルネットワークモデルを提案する。
このモデルは、哺乳類の新皮質と海馬に関する幅広い実験的な発見と互換性がある。
論文 参考訳(メタデータ) (2021-10-11T11:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。