Applying LLM and Topic Modelling in Psychotherapeutic Contexts
- URL: http://arxiv.org/abs/2412.17449v1
- Date: Mon, 23 Dec 2024 10:14:32 GMT
- Title: Applying LLM and Topic Modelling in Psychotherapeutic Contexts
- Authors: Alexander Vanin, Vadim Bolshev, Anastasia Panfilova,
- Abstract summary: The paper focuses on the application of BERTopic, a machine learning-based topic modeling tool, to the dialogue of two different groups of therapists.
Results highlighted the most common and stable topics in therapists speech, offering insights into how language patterns in therapy develop and remain stable across different therapeutic styles.
- Score: 44.99833362998488
- License:
- Abstract: This study explores the use of Large language models to analyze therapist remarks in a psychotherapeutic setting. The paper focuses on the application of BERTopic, a machine learning-based topic modeling tool, to the dialogue of two different groups of therapists (classical and modern), which makes it possible to identify and describe a set of topics that consistently emerge across these groups. The paper describes in detail the chosen algorithm for BERTopic, which included creating a vector space from a corpus of therapist remarks, reducing its dimensionality, clustering the space, and creating and optimizing topic representation. Along with the automatic topical modeling by the BERTopic, the research involved an expert assessment of the findings and manual topic structure optimization. The topic modeling results highlighted the most common and stable topics in therapists speech, offering insights into how language patterns in therapy develop and remain stable across different therapeutic styles. This work contributes to the growing field of machine learning in psychotherapy by demonstrating the potential of automated methods to improve both the practice and training of therapists. The study highlights the value of topic modeling as a tool for gaining a deeper understanding of therapeutic dialogue and offers new opportunities for improving therapeutic effectiveness and clinical supervision.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - EMMI -- Empathic Multimodal Motivational Interviews Dataset: Analyses and Annotations [0.7499722271664147]
This study aims to uncover how therapists skillfully blend therapy's task goal (employing classical steps of Motivational Interviewing) with the social goal (building a trusting relationship and expressing empathy)
We present multimodal annotations of a corpus consisting of simulated motivational interviewing conversations.
We analyze these annotations to characterize functional behavior for developing a virtual agent performing motivational interviews emphasizing social and empathic behaviors.
arXiv Detail & Related papers (2024-06-24T09:32:28Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains.
The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C)
arXiv Detail & Related papers (2024-06-09T09:03:11Z) - Conversational Topic Recommendation in Counseling and Psychotherapy with Decision Transformer and Large Language Models [17.236038165057817]
We leverage a decision transformer architecture for topic recommendation in counseling conversations.
The architecture is utilized for offline reinforcement learning.
We propose a novel system of utilizing our model's output as synthetic labels for fine-tuning a large language model.
arXiv Detail & Related papers (2024-05-08T13:55:25Z) - COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling [14.04866656172336]
We present a novel framework to infer the therapeutic working alliance from the natural language used in psychotherapy sessions.
Our approach utilizes advanced large language models (LLMs) to analyze transcripts of psychotherapy sessions and compare them with distributed representations of statements in the working alliance inventory.
arXiv Detail & Related papers (2024-02-22T16:56:44Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - TherapyView: Visualizing Therapy Sessions with Temporal Topic Modeling
and AI-Generated Arts [24.740247834989248]
We present the TherapyView, a demonstration system to help therapists visualize the dynamic contents of past treatment sessions.
The system incorporates temporal modeling to provide a time-series representation of topic similarities at a turn-level resolution and AI-generated artworks.
This system provides a proof of concept of AI-augmented therapy tools with e in-depth understanding of the patient's mental state and enabling more effective treatment.
arXiv Detail & Related papers (2023-02-21T17:53:45Z) - GDPR Compliant Collection of Therapist-Patient-Dialogues [48.091760741427656]
We elaborate on the challenges we faced in starting our collection of therapist-patient dialogues in a psychiatry clinic under the General Data Privacy Regulation of the European Union.
We give an overview of each step in our procedure and point out the potential pitfalls to motivate further research in this field.
arXiv Detail & Related papers (2022-11-22T15:51:10Z) - Neural Topic Modeling of Psychotherapy Sessions [25.053067951196137]
We compare different neural topic modeling methods in learning the topical propensities of different psychiatric conditions from the psychotherapy session transcripts parsed from speech recordings.
We believe this topic modeling framework can offer interpretable insights for the therapist to optimally decide his or her strategy and improve the psychotherapy effectiveness.
arXiv Detail & Related papers (2022-04-13T04:05:39Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
We propose an automated framework for body language based emotion recognition starting from regular RGB videos.
In collaboration with psychologists, we extend the framework for psychiatric symptom prediction.
Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set.
arXiv Detail & Related papers (2020-10-30T18:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.