Conversational Topic Recommendation in Counseling and Psychotherapy with Decision Transformer and Large Language Models
- URL: http://arxiv.org/abs/2405.05060v1
- Date: Wed, 8 May 2024 13:55:25 GMT
- Title: Conversational Topic Recommendation in Counseling and Psychotherapy with Decision Transformer and Large Language Models
- Authors: Aylin Gunal, Baihan Lin, Djallel Bouneffouf,
- Abstract summary: We leverage a decision transformer architecture for topic recommendation in counseling conversations.
The architecture is utilized for offline reinforcement learning.
We propose a novel system of utilizing our model's output as synthetic labels for fine-tuning a large language model.
- Score: 17.236038165057817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the increasing demand for mental health assistance, artificial intelligence (AI), particularly large language models (LLMs), may be valuable for integration into automated clinical support systems. In this work, we leverage a decision transformer architecture for topic recommendation in counseling conversations between patients and mental health professionals. The architecture is utilized for offline reinforcement learning, and we extract states (dialogue turn embeddings), actions (conversation topics), and rewards (scores measuring the alignment between patient and therapist) from previous turns within a conversation to train a decision transformer model. We demonstrate an improvement over baseline reinforcement learning methods, and propose a novel system of utilizing our model's output as synthetic labels for fine-tuning a large language model for the same task. Although our implementation based on LLaMA-2 7B has mixed results, future work can undoubtedly build on the design.
Related papers
- Applying LLM and Topic Modelling in Psychotherapeutic Contexts [44.99833362998488]
The paper focuses on the application of BERTopic, a machine learning-based topic modeling tool, to the dialogue of two different groups of therapists.
Results highlighted the most common and stable topics in therapists speech, offering insights into how language patterns in therapy develop and remain stable across different therapeutic styles.
arXiv Detail & Related papers (2024-12-23T10:14:32Z) - Script-Based Dialog Policy Planning for LLM-Powered Conversational Agents: A Basic Architecture for an "AI Therapist" [0.0]
Large Language Model (LLM)-Powered Conversational Agents have the potential to provide users with scaled behavioral healthcare support.
We introduce a novel paradigm for dialog policy planning in conversational agents enabling them to act according to an expert-written "script"
We implement two variants of Script-Based Dialog Policy Planning using different prompting techniques and synthesize a total of 100 conversations with LLM-simulated patients.
arXiv Detail & Related papers (2024-12-13T12:12:47Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
We examine the effects of prompt engineering to guide Large Language Models (LLMs) in delivering parts of a Problem-Solving Therapy session via text.
We demonstrate that the models' capability to deliver protocolized therapy can be improved with the proper use of prompt engineering methods.
arXiv Detail & Related papers (2024-08-27T17:25:16Z) - Optimizing Psychological Counseling with Instruction-Tuned Large Language Models [9.19192059750618]
This paper explores the application of large language models (LLMs) in psychological counseling.
We present a method for instruction tuning LLMs with specialized prompts to enhance their performance in providing empathetic, relevant, and supportive responses.
arXiv Detail & Related papers (2024-06-19T15:13:07Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
We introduce an innovative methodology that synthesizes human insights with the computational prowess of Large Language Models (LLMs)
By utilizing the in-context learning potential of ChatGPT, we generate an ExTensible Emotional Support dialogue dataset, named ExTES.
Following this, we deploy advanced tuning techniques on the LLaMA model, examining the impact of diverse training strategies, ultimately yielding an LLM meticulously optimized for emotional support interactions.
arXiv Detail & Related papers (2023-08-17T10:49:18Z) - BatGPT: A Bidirectional Autoregessive Talker from Generative Pre-trained
Transformer [77.28871523946418]
BatGPT is a large-scale language model designed and trained jointly by Wuhan University and Shanghai Jiao Tong University.
It is capable of generating highly natural and fluent text in response to various types of input, including text prompts, images, and audio.
arXiv Detail & Related papers (2023-07-01T15:10:01Z) - Response-act Guided Reinforced Dialogue Generation for Mental Health
Counseling [25.524804770124145]
We present READER, a dialogue-act guided response generator for mental health counseling conversations.
READER is built on transformer to jointly predict a potential dialogue-act d(t+1) for the next utterance (aka response-act) and to generate an appropriate response u(t+1)
We evaluate READER on HOPE, a benchmark counseling conversation dataset.
arXiv Detail & Related papers (2023-01-30T08:53:35Z) - Self-Supervised Knowledge Assimilation for Expert-Layman Text Style
Transfer [63.72621204057025]
Expert-layman text style transfer technologies have the potential to improve communication between scientific communities and the general public.
High-quality information produced by experts is often filled with difficult jargon laypeople struggle to understand.
This is a particularly notable issue in the medical domain, where layman are often confused by medical text online.
arXiv Detail & Related papers (2021-10-06T17:57:22Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.