Enhancing Cancer Diagnosis with Explainable & Trustworthy Deep Learning Models
- URL: http://arxiv.org/abs/2412.17527v1
- Date: Mon, 23 Dec 2024 12:50:47 GMT
- Title: Enhancing Cancer Diagnosis with Explainable & Trustworthy Deep Learning Models
- Authors: Badaru I. Olumuyiwa, The Anh Han, Zia U. Shamszaman,
- Abstract summary: This research presents an innovative approach to cancer diagnosis and prediction using explainable Artificial Intelligence (XAI) and deep learning techniques.
Our study develops an AI model that provides precise outcomes and clear insights into its decision-making process.
The model's applications extend beyond cancer diagnosis, potentially transforming various aspects of medical decision-making and saving millions of lives worldwide.
- Score: 1.1060425537315088
- License:
- Abstract: This research presents an innovative approach to cancer diagnosis and prediction using explainable Artificial Intelligence (XAI) and deep learning techniques. With cancer causing nearly 10 million deaths globally in 2020, early and accurate diagnosis is crucial. Traditional methods often face challenges in cost, accuracy, and efficiency. Our study develops an AI model that provides precise outcomes and clear insights into its decision-making process, addressing the "black box" problem of deep learning models. By employing XAI techniques, we enhance interpretability and transparency, building trust among healthcare professionals and patients. Our approach leverages neural networks to analyse extensive datasets, identifying patterns for cancer detection. This model has the potential to revolutionise diagnosis by improving accuracy, accessibility, and clarity in medical decision-making, possibly leading to earlier detection and more personalised treatment strategies. Furthermore, it could democratise access to high-quality diagnostics, particularly in resource-limited settings, contributing to global health equity. The model's applications extend beyond cancer diagnosis, potentially transforming various aspects of medical decision-making and saving millions of lives worldwide.
Related papers
- AI in Oncology: Transforming Cancer Detection through Machine Learning and Deep Learning Applications [0.3937575566991286]
This review examines the limitations of conventional diagnostic techniques and explores the transformative role of AI in diagnosing and treating cancers.
The study delves into the application of AI in radiomics for detailed cancer characterization, predictive analytics for identifying associated risks, and the development of algorithm-driven robots for immediate diagnosis.
The overarching goal of this platform is to support the development of expert recommendations and to provide universal, efficient diagnostic procedures.
arXiv Detail & Related papers (2025-01-26T11:32:43Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer.
The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations.
A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions.
arXiv Detail & Related papers (2024-04-05T05:00:21Z) - An Interpretable Deep Learning Approach for Skin Cancer Categorization [0.0]
We use modern deep learning methods and explainable artificial intelligence (XAI) approaches to address the problem of skin cancer detection.
To categorize skin lesions, we employ four cutting-edge pre-trained models: XceptionNet, EfficientNetV2S, InceptionResNetV2, and EfficientNetV2M.
Our study shows how deep learning and explainable artificial intelligence (XAI) can improve skin cancer diagnosis.
arXiv Detail & Related papers (2023-12-17T12:11:38Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Designing a Deep Learning-Driven Resource-Efficient Diagnostic System
for Metastatic Breast Cancer: Reducing Long Delays of Clinical Diagnosis and
Improving Patient Survival in Developing Countries [8.024420292033492]
The delay between the initial development of symptoms and the receipt of a diagnosis could stretch upwards 15 months.
This research has developed a deep learning-based diagnosis system for metastatic breast cancer.
The MobileNetV2 diagnostic models can identify very small cancerous nodes embedded in a large area of normal cells.
arXiv Detail & Related papers (2023-08-04T03:09:48Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.