論文の概要: EasyTime: Time Series Forecasting Made Easy
- arxiv url: http://arxiv.org/abs/2412.17603v1
- Date: Mon, 23 Dec 2024 14:22:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:40.774053
- Title: EasyTime: Time Series Forecasting Made Easy
- Title(参考訳): EasyTime: 時系列の予測が簡単になった
- Authors: Xiangfei Qiu, Xiuwen Li, Ruiyang Pang, Zhicheng Pan, Xingjian Wu, Liu Yang, Jilin Hu, Yang Shu, Xuesong Lu, Chengcheng Yang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Bin Yang,
- Abstract要約: 時系列予測の使用を簡略化するためにEasyTimeをどのように利用できるかを示す。
EasyTimeは、新しい予測方法のワンクリック評価を可能にする。
予測手法を組み合わせることで予測精度を向上する自動アンサンブルモジュールを提供する。
- 参考スコア(独自算出の注目度): 35.66163191201942
- License:
- Abstract: Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.
- Abstract(参考訳): 時系列予測は様々な領域にまたがって重要な応用がある。
EasyTimeは,研究者や実践者などによる時系列予測手法の活用を容易にするシステムである。
まず、EasyTimeはワンクリック評価を可能にし、既存の時系列予測ベンチマーク(TFB)で収集された多様な時系列データセットのスイートを使用して、研究者が新しい予測方法を評価することができる。
これはTFBのフレキシブルで一貫した評価パイプラインを活用することで実現される。
第二に、実践者が新しいデータセットで予測を実行しなければならない場合、非自明な最初のステップは、しばしば適切な予測方法を見つけることである。
EasyTimeは、予測メソッドを結合した自動アンサンブルモジュールを提供し、個々のメソッドと比較して予測精度が優れている。
第三にEasyTimeは、大きな言語モデルを活用した自然言語Q&Aモジュールを提供する。
Which method is best for long term forecasting on time series with strong seasonality?, EasyTime is converts the question on the database of results by TFB then return an answer in natural language and charts。
EasyTimeを実演することで、時系列予測の利用をシンプルにし、新しい世代の時系列予測手法の開発により良いサポートを提供することができるかを示す。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Can time series forecasting be automated? A benchmark and analysis [4.19475889117731]
時系列予測は、金融、医療、気象など様々な分野において重要な役割を担っている。
与えられたデータセットに対して最適な予測方法を選択するタスクは、データパターンや特徴の多様性による複雑なタスクである。
本研究では,幅広いデータセットを対象とした時系列予測手法の評価とランキングのための総合ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-07-23T12:54:06Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronosは事前訓練された確率的時系列モデルのためのフレームワークである。
クロノスモデルでは,様々な領域の時系列データを利用して,未知の予測タスクにおけるゼロショット精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-12T16:53:54Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - PromptCast: A New Prompt-based Learning Paradigm for Time Series
Forecasting [11.670324826998968]
既存の時系列予測手法では,数値列を入力とし,数値列を出力とする。
事前学習された言語基盤モデルの成功に触発されて、我々は新しい予測パラダイム、即時時系列予測を提案する。
この新たなタスクでは、数値入力と出力をプロンプトに変換し、予測タスクを文対文でフレーム化する。
論文 参考訳(メタデータ) (2022-09-20T10:15:35Z) - Respecting Time Series Properties Makes Deep Time Series Forecasting
Perfect [3.830797055092574]
時系列予測モデルにおいて、時間的特徴をどのように扱うかが重要な問題である。
本稿では,3つの有意だが未確立の深層時系列予測機構を厳密に分析する。
上記の分析に基づいて,新しい時系列予測ネットワーク,すなわちRTNetを提案する。
論文 参考訳(メタデータ) (2022-07-22T08:34:31Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Ensembles of Randomized NNs for Pattern-based Time Series Forecasting [0.0]
本稿では,ランダム化ニューラルネットワークに基づくアンサンブル予測手法を提案する。
時系列のパターンに基づく表現は、複数の季節の時系列を予測するのに適している。
4つの実世界の予測問題に対するケーススタディにより,提案手法の有効性と性能が検証された。
論文 参考訳(メタデータ) (2021-07-08T20:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。