論文の概要: Tracking the Feature Dynamics in LLM Training: A Mechanistic Study
- arxiv url: http://arxiv.org/abs/2412.17626v1
- Date: Mon, 23 Dec 2024 14:58:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:34.200269
- Title: Tracking the Feature Dynamics in LLM Training: A Mechanistic Study
- Title(参考訳): LLMトレーニングにおける特徴ダイナミクスの追跡 : メカニカルスタディ
- Authors: Yang Xu, Yi Wang, Hao Wang,
- Abstract要約: 連続的なSAE系列を効率よく得る手法であるSAE-Trackを紹介する。
次に特徴形成の過程を定式化し、力学解析を行う。
次に、トレーニング中にフィーチャードリフトを分析し、視覚化します。
- 参考スコア(独自算出の注目度): 9.663526567640734
- License:
- Abstract: Understanding training dynamics and feature evolution is crucial for the mechanistic interpretability of large language models (LLMs). Although sparse autoencoders (SAEs) have been used to identify features within LLMs, a clear picture of how these features evolve during training remains elusive. In this study, we: (1) introduce SAE-Track, a method to efficiently obtain a continual series of SAEs; (2) formulate the process of feature formation and conduct a mechanistic analysis; and (3) analyze and visualize feature drift during training. Our work provides new insights into the dynamics of features in LLMs, enhancing our understanding of training mechanisms and feature evolution.
- Abstract(参考訳): 学習力学と機能進化を理解することは,大規模言語モデル(LLM)の機械的解釈可能性にとって重要である。
スパースオートエンコーダ (SAE) はLSM内の特徴を特定するのに使われてきたが、これらの特徴がトレーニング中にどのように進化するかを明確に示している。
本研究では,(1)SAE-Trackの導入,(2)特徴形成の過程を定式化し,機械的解析を行い,(3)訓練中の特徴の漂流を解析・可視化する手法を提案する。
私たちの研究は、LLMの機能のダイナミクスに関する新たな洞察を提供し、トレーニングメカニズムと機能進化に対する理解を深めます。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - How Feature Learning Can Improve Neural Scaling Laws [86.9540615081759]
我々は,カーネル限界を超えたニューラルスケーリング法則の解法モデルを開発する。
モデルのサイズ、トレーニング時間、利用可能なデータの総量によるパフォーマンスのスケールアップ方法を示す。
論文 参考訳(メタデータ) (2024-09-26T14:05:32Z) - Dynamics of Meta-learning Representation in the Teacher-student Scenario [8.099691748821114]
グラディエントベースのメタ学習アルゴリズムは、限られたデータを使って新しいタスクでモデルをトレーニングできることで人気を集めている。
本研究では,教師・学生シナリオにおけるストリーミングタスクを訓練した非線形2層ニューラルネットワークのメタラーニングダイナミクスについて検討する。
論文 参考訳(メタデータ) (2024-08-22T16:59:32Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
大規模言語モデル(LLM)は、様々な分野やインテリジェントエージェントアプリケーションにおいて大きく進歩している。
この問題に対処するために、LLMが自律的に獲得し、洗練し、モデル自身によって生成された経験から学ぶことができる自己進化的アプローチが急速に成長している。
論文 参考訳(メタデータ) (2024-04-22T17:43:23Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
簡単な指示追従タスクを導入し、合成データセットを用いてトランスフォーマーに基づく因果言語モデルを分析する。
本研究は,本モデルが隠れ空間内のデータをクラスタリングすることで,タスク固有の情報を学習し,学習中にこのクラスタリングプロセスが動的に進化することを示唆している。
論文 参考訳(メタデータ) (2024-02-19T14:02:31Z) - Towards Uncovering How Large Language Model Works: An Explainability Perspective [38.07611356855978]
大規模言語モデル(LLM)は言語タスクのブレークスルーをもたらしたが、その顕著な一般化と推論能力を実現する内部メカニズムは不透明のままである。
本稿では,LLM機能の基礎となるメカニズムを,説明可能性のレンズを通して明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-02-16T13:46:06Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
SELF(Self-Evolution with Language Feedback)は、大規模言語モデルを進化させる新しいアプローチである。
LLMは、人間の学習プロセスと同様、自己回帰を通じて自己改善を可能にする。
数学および一般タスクにおける実験により,SELFは人間の介入なしにLLMの能力を高めることができることが示された。
論文 参考訳(メタデータ) (2023-10-01T00:52:24Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - Learn to Synchronize, Synchronize to Learn [17.410653711408827]
本稿では,Reservoir Computing (RC) を訓練して汎用的なタスクを解く際に,一般化同期が果たす役割を分析する。
GSは,入力信号を生成するシステムをその力学に正しくエンコードする方法を示す。
また、このプロセスにおいてエルゴード性が果たす役割についても検討し、その存在によって学習結果が複数の入力軌跡に適用できることを示す。
論文 参考訳(メタデータ) (2020-10-06T16:29:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。