論文の概要: FedTLU: Federated Learning with Targeted Layer Updates
- arxiv url: http://arxiv.org/abs/2412.17692v1
- Date: Mon, 23 Dec 2024 16:17:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:32.429685
- Title: FedTLU: Federated Learning with Targeted Layer Updates
- Title(参考訳): FedTLU: ターゲットのレイヤ更新によるフェデレーションラーニング
- Authors: Jong-Ik Park, Carlee Joe-Wong,
- Abstract要約: フェデレートラーニング(FL)は、複数のクライアントがトレーニング言語モデルにコントリビュートできるようにすることによって、言語モデリングにおけるプライバシの問題に対処する。
非IID(同一かつ独立に分散した)データは、FLの性能を制限していることが多い。
本稿では,FLにおける微調整のための層更新戦略を提案する。
- 参考スコア(独自算出の注目度): 12.800116749927266
- License:
- Abstract: Federated learning (FL) addresses privacy concerns in language modeling by enabling multiple clients to contribute to training language models. However, non-IID (identically and independently distributed) data across clients often limits FL's performance. This issue is especially challenging during model fine-tuning, as noise due to variations in clients' data distributions can harm model convergence near the optimum. This paper proposes a targeted layer update strategy for fine-tuning in FL. Instead of randomly updating layers of the language model, as often done in practice, we use a scoring mechanism to identify and update the most critical layers, avoiding excessively noisy or even poisoned updates by freezing the parameters in other layers. We show in extensive experiments that our method improves convergence and performance in non-IID settings, offering a more efficient approach to fine-tuning federated language models.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のクライアントがトレーニング言語モデルにコントリビュートできるようにすることによって、言語モデリングにおけるプライバシの問題に対処する。
しかし、クライアント間の非IID(同一かつ独立に分散された)データはFLの性能を制限していることが多い。
この問題は、クライアントのデータ分布の変化によるノイズが最適付近のモデル収束を損なうため、モデル微調整において特に困難である。
本稿では,FLにおける微調整のための層更新戦略を提案する。
実際に行われているように、言語モデルのレイヤをランダムに更新する代わりに、スコアリングメカニズムを使用して、最も重要なレイヤを特定して更新します。
我々は,この手法が非IID設定における収束と性能を向上させることを示し,より効率的なフェデレーション言語モデル構築手法を提案する。
関連論文リスト
- Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation [7.200910949076064]
フェデレートラーニング(FL)は、複数のクライアントがローカルデータを共有せずに、協調的にモデルをトレーニングすることを可能にする。
しかし、FLシステムは、悪質なモデルの更新をアップロードすることでモデルのトレーニングプロセスを妨害することを目的とした、よく設計されたByzantine攻撃に対して脆弱である。
本稿では,階層的適応アグリゲーションと事前アグリゲーション・スパリフィケーションを組み合わせたLayer-Adaptive Sparsified Model Aggregation(LASA)手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T19:28:35Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
大規模言語モデル(LLM)は大きな成功を収めたが、敵の摂動に対する脆弱性は大きな懸念を引き起こしている。
本稿では,LLMのマルチタスク特性を活用して,まずノイズの入力を識別し,次にこれらの復号化バージョンに基づいて予測を行う。
LLMのロバスト性を高めるために個別のモデルを訓練する必要がある従来のコンピュータビジョンのスムース化技術とは異なり、本手法は効率と柔軟性を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T15:47:00Z) - Decentralized Sporadic Federated Learning: A Unified Algorithmic Framework with Convergence Guarantees [18.24213566328972]
分散分散学習(DFL)は、(i)モデル更新と(ii)モデルアグリゲーションの両方をクライアントが中央サーバなしで実行するFL設定をキャプチャする。
DSpodFLは、さまざまなシステム設定下でのベースラインと比較して、一貫して速度を達成している。
論文 参考訳(メタデータ) (2024-02-05T19:02:19Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
パーソナライズド・フェデレーション・ラーニング(PFL)のための新しいフレームワークを提案する。
PFLは、クライアント間で共有モデルをトレーニングする分散学習スキームである。
階層的モデリングと変分推論に基づくPFLの新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T20:12:27Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Analysis and Optimal Edge Assignment For Hierarchical Federated Learning
on Non-IID Data [43.32085029569374]
フェデレーション学習アルゴリズムは、ユーザのデバイスに格納された分散および多様なデータを活用して、グローバルな現象を学習することを目的としている。
参加者のデータが強く歪んだ場合(例えば、非iidの場合)、ローカルモデルはローカルデータに過剰に適合し、低パフォーマンスなグローバルモデルに繋がる。
ユーザエッジ層にFederated Gradient Descent、エッジクラウド層にFederated Averagingを実行する階層学習システムを提案する。
論文 参考訳(メタデータ) (2020-12-10T12:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。