論文の概要: Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation
- arxiv url: http://arxiv.org/abs/2409.01435v1
- Date: Mon, 2 Sep 2024 19:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 04:02:22.054633
- Title: Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation
- Title(参考訳): 層適応スカラー化モデルアグリゲーションによるビザンチンレジリエント・フェデレーション学習の実現
- Authors: Jiahao Xu, Zikai Zhang, Rui Hu,
- Abstract要約: フェデレートラーニング(FL)は、複数のクライアントがローカルデータを共有せずに、協調的にモデルをトレーニングすることを可能にする。
しかし、FLシステムは、悪質なモデルの更新をアップロードすることでモデルのトレーニングプロセスを妨害することを目的とした、よく設計されたByzantine攻撃に対して脆弱である。
本稿では,階層的適応アグリゲーションと事前アグリゲーション・スパリフィケーションを組み合わせたLayer-Adaptive Sparsified Model Aggregation(LASA)手法を提案する。
- 参考スコア(独自算出の注目度): 7.200910949076064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their local data. Yet the FL system is vulnerable to well-designed Byzantine attacks, which aim to disrupt the model training process by uploading malicious model updates. Existing robust aggregation rule-based defense methods overlook the diversity of magnitude and direction across different layers of the model updates, resulting in limited robustness performance, particularly in non-IID settings. To address these challenges, we propose the Layer-Adaptive Sparsified Model Aggregation (LASA) approach, which combines pre-aggregation sparsification with layer-wise adaptive aggregation to improve robustness. Specifically, LASA includes a pre-aggregation sparsification module that sparsifies updates from each client before aggregation, reducing the impact of malicious parameters and minimizing the interference from less important parameters for the subsequent filtering process. Based on sparsified updates, a layer-wise adaptive filter then adaptively selects benign layers using both magnitude and direction metrics across all clients for aggregation. We provide the detailed theoretical robustness analysis of LASA and the resilience analysis for the FL integrated with LASA. Extensive experiments are conducted on various IID and non-IID datasets. The numerical results demonstrate the effectiveness of LASA. Code is available at \url{https://github.com/JiiahaoXU/LASA}.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のクライアントがローカルデータを共有せずに、協調的にモデルをトレーニングすることを可能にする。
しかし、FLシステムは、悪質なモデルの更新をアップロードすることでモデルのトレーニングプロセスを妨害することを目的とした、よく設計されたByzantine攻撃に対して脆弱である。
既存のロバストアグリゲーションルールに基づく防御手法は、モデル更新の異なる層にまたがる大きさと方向の多様性を見落とし、特に非IID設定において、ロバスト性のパフォーマンスが制限される。
これらの課題に対処するため、我々は、階層的適応アグリゲーションと事前アグリゲーション・スパレーションを組み合わせたLayer-Adaptive Sparsified Model Aggregation (LASA)アプローチを提案する。
特に、LASAには、アグリゲーション前の各クライアントからの更新をスペーシングし、悪意のあるパラメータの影響を減らし、その後のフィルタリングプロセスにおいて重要でないパラメータから干渉を最小限にする事前集約スペーシフィケーションモジュールが含まれている。
分割された更新に基づいて、レイヤワイド適応フィルタは、アグリゲーションのためにすべてのクライアントにわたって、大きさと方向の両方のメトリクスを使用して、良質な層を適応的に選択する。
LASA の詳細な理論的堅牢性解析と LASA と統合された FL のレジリエンス解析について述べる。
様々なIIDおよび非IIDデータセットに対して大規模な実験を行う。
その結果,LASAの有効性が示された。
コードは \url{https://github.com/JiiahaoXU/LASA} で公開されている。
関連論文リスト
- FedECADO: A Dynamical System Model of Federated Learning [15.425099636035108]
フェデレーション学習は分散最適化の力を活用して、別々のクライアント間で統一された機械学習モデルをトレーニングする。
本研究は,フェデレート学習プロセスの動的システム表現にインスパイアされた新しいアルゴリズムであるFedECADOを提案する。
FedProxやFedNovaといった著名な技術と比較して、FedECADOは多くの異種シナリオにおいて高い分類精度を達成する。
論文 参考訳(メタデータ) (2024-10-13T17:26:43Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
本稿では,集中型LCMと下流エミュレータ間でトランスフォーマブロックを転送する代表的手法であるOffsite-Tuning(OFT)に焦点を当てる。
これらの観測にインスパイアされたCRaShは、LCMから改善エミュレータを導出するトレーニングフリー戦略であるClustering、Removing、Sharingを含む。
以上の結果から,CRaShとOFTの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-10-24T03:08:58Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental
Regularization [5.182014186927254]
大規模Deep Neural Networks(DNN)の分散トレーニングと推論にFL(Federated Learning)が成功している。
我々は、(i)動的プルーニングとエラーフィードバックを組み合わせて冗長な情報交換を排除する新しいFLフレームワーク(Coined FedDIP)にコントリビュートする。
我々は、FedDIPの収束解析と総合的な性能について報告し、最先端手法との比較評価を行う。
論文 参考訳(メタデータ) (2023-09-13T08:51:19Z) - NeFL: Nested Model Scaling for Federated Learning with System Heterogeneous Clients [44.89061671579694]
フェデレートラーニング(FL)は、データのプライバシを保ちながら分散トレーニングを可能にするが、ストラグラーのスローあるいは無効なクライアントは、トレーニング時間を大幅に短縮し、パフォーマンスを低下させる。
深層ニューラルネットワークを深層スケールと幅ワイドスケーリングの両方を用いてサブモデルに効率的に分割するフレームワークであるネスト付きフェデレーションラーニング(NeFL)を提案する。
NeFLは、特に最低ケースのサブモデルでは、ベースラインアプローチに比べてパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-08-15T13:29:14Z) - Layer-wise Adaptive Model Aggregation for Scalable Federated Learning [11.669431684184536]
フェデレートラーニング(Federated Learning)では、クライアント間でローカルモデルを集約する一般的なアプローチとして、完全なモデルパラメータの定期的な平均化がある。
我々は,スケーラブルなフェデレート学習のためのレイヤワイドモデルアグリゲーションスキームであるFedLAMAを提案する。
論文 参考訳(メタデータ) (2021-10-19T22:49:04Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。