VidTwin: Video VAE with Decoupled Structure and Dynamics
- URL: http://arxiv.org/abs/2412.17726v1
- Date: Mon, 23 Dec 2024 17:16:58 GMT
- Title: VidTwin: Video VAE with Decoupled Structure and Dynamics
- Authors: Yuchi Wang, Junliang Guo, Xinyi Xie, Tianyu He, Xu Sun, Jiang Bian,
- Abstract summary: VidTwin is a video autoencoder that decouples video into two distinct latent spaces.
Structure latent vectors capture overall content and global movement, and Dynamics latent vectors represent fine-grained details and rapid movements.
Experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality.
- Score: 24.51768013474122
- License:
- Abstract: Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Our code has been released at https://github.com/microsoft/VidTok/tree/main/vidtwin.
Related papers
- Large Motion Video Autoencoding with Cross-modal Video VAE [52.13379965800485]
Video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation.
Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance.
We present a novel and powerful video autoencoder capable of high-fidelity video encoding.
arXiv Detail & Related papers (2024-12-23T18:58:24Z) - Dynamic-VLM: Simple Dynamic Visual Token Compression for VideoLLM [28.64108439552772]
We introduce a large-scale synthetic dataset created from proprietary models.
We also explore a dynamic visual token compression architecture that strikes a balance between computational efficiency and performance.
Our proposed model achieves state-of-the-art results across various video tasks and shows impressive generalization.
arXiv Detail & Related papers (2024-12-12T18:20:41Z) - MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion [3.7270979204213446]
We present four key contributions to address the challenges of video processing.
First, we introduce the 3D Inverted Vector-Quantization Variencoenco Autocoder.
Second, we present MotionAura, a text-to-video generation framework.
Third, we propose a spectral transformer-based denoising network.
Fourth, we introduce a downstream task of Sketch Guided Videopainting.
arXiv Detail & Related papers (2024-10-10T07:07:56Z) - Fast Encoding and Decoding for Implicit Video Representation [88.43612845776265]
We introduce NeRV-Enc, a transformer-based hyper-network for fast encoding; and NeRV-Dec, a parallel decoder for efficient video loading.
NeRV-Enc achieves an impressive speed-up of $mathbf104times$ by eliminating gradient-based optimization.
NeRV-Dec simplifies video decoding, outperforming conventional codecs with a loading speed $mathbf11times$ faster.
arXiv Detail & Related papers (2024-09-28T18:21:52Z) - xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [118.72266141321647]
Cross-Modality Video Coding (CMVC) is a pioneering approach to explore multimodality representation and video generative models in video coding.
During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes.
Experiments indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency.
arXiv Detail & Related papers (2024-08-15T11:36:18Z) - VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding [15.959757105308238]
Video LMMs rely on either image or video encoders to process visual inputs, each of which has its own limitations.
We introduce VideoGPT+, which combines the complementary benefits of the image encoder (for detailed spatial understanding) and the video encoder (for global temporal context modeling)
Our architecture showcases improved performance across multiple video benchmarks, including VCGBench, MVBench and Zero-shot question-answering.
arXiv Detail & Related papers (2024-06-13T17:59:59Z) - MagicVideo: Efficient Video Generation With Latent Diffusion Models [76.95903791630624]
We present an efficient text-to-video generation framework based on latent diffusion models, termed MagicVideo.
Due to a novel and efficient 3D U-Net design and modeling video distributions in a low-dimensional space, MagicVideo can synthesize video clips with 256x256 spatial resolution on a single GPU card.
We conduct extensive experiments and demonstrate that MagicVideo can generate high-quality video clips with either realistic or imaginary content.
arXiv Detail & Related papers (2022-11-20T16:40:31Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
We show how to train neural representations with learnable positional features (NVP) that effectively amortize a video as latent codes.
We demonstrate the superiority of NVP on the popular UVG benchmark; compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes) but also exceeds their encoding quality as 34.07rightarrow$34.57 (measured with the PSNR metric)
arXiv Detail & Related papers (2022-10-13T08:15:08Z) - Autoencoding Video Latents for Adversarial Video Generation [0.0]
AVLAE is a two stream latent autoencoder where the video distribution is learned by adversarial training.
We demonstrate that our approach learns to disentangle motion and appearance codes even without the explicit structural composition in the generator.
arXiv Detail & Related papers (2022-01-18T11:42:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.