ActiveGS: Active Scene Reconstruction using Gaussian Splatting
- URL: http://arxiv.org/abs/2412.17769v1
- Date: Mon, 23 Dec 2024 18:29:03 GMT
- Title: ActiveGS: Active Scene Reconstruction using Gaussian Splatting
- Authors: Liren Jin, Xingguang Zhong, Yue Pan, Jens Behley, Cyrill Stachniss, Marija Popović,
- Abstract summary: We tackle the challenge of actively building an accurate map of an unknown scene using an on-board RGB-D camera.
We propose a hybrid map representation that combines a Gaussian splatting map with a coarse voxel map.
We demonstrate the applicability of our active scene reconstruction framework in the real world using an unmanned aerial vehicle.
- Score: 30.834272544535335
- License:
- Abstract: Robotics applications often rely on scene reconstructions to enable downstream tasks. In this work, we tackle the challenge of actively building an accurate map of an unknown scene using an on-board RGB-D camera. We propose a hybrid map representation that combines a Gaussian splatting map with a coarse voxel map, leveraging the strengths of both representations: the high-fidelity scene reconstruction capabilities of Gaussian splatting and the spatial modelling strengths of the voxel map. The core of our framework is an effective confidence modelling technique for the Gaussian splatting map to identify under-reconstructed areas, while utilising spatial information from the voxel map to target unexplored areas and assist in collision-free path planning. By actively collecting scene information in under-reconstructed and unexplored areas for map updates, our approach achieves superior Gaussian splatting reconstruction results compared to state-of-the-art approaches. Additionally, we demonstrate the applicability of our active scene reconstruction framework in the real world using an unmanned aerial vehicle.
Related papers
- ActiveSplat: High-Fidelity Scene Reconstruction through Active Gaussian Splatting [12.628559736243536]
We propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting.
The system establishes a unified framework for online mapping, viewpoint selection, and path planning.
Experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency.
arXiv Detail & Related papers (2024-10-29T11:18:04Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - HPix: Generating Vector Maps from Satellite Images [0.0]
We propose a novel method called HPix, which utilizes modified Generative Adversarial Networks (GANs) to generate vector tile map from satellite images.
Through empirical evaluations, our proposed approach showcases its effectiveness in producing highly accurate and visually captivating vector tile maps.
We further extend our study's application to include mapping of road intersections and building footprints cluster based on their area.
arXiv Detail & Related papers (2024-07-18T16:54:02Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - TK-Planes: Tiered K-Planes with High Dimensional Feature Vectors for Dynamic UAV-based Scenes [58.180556221044235]
We present a new approach to bridge the domain gap between synthetic and real-world data for unmanned aerial vehicle (UAV)-based perception.
Our formulation is designed for dynamic scenes, consisting of small moving objects or human actions.
We evaluate its performance on challenging datasets, including Okutama Action and UG2.
arXiv Detail & Related papers (2024-05-04T21:55:33Z) - HGS-Mapping: Online Dense Mapping Using Hybrid Gaussian Representation in Urban Scenes [9.698226248064454]
We propose HGS-Mapping, an online dense mapping framework in large-scale urban scenes.
We are the first to integrate Gaussian representation into online dense mapping of urban scenes.
Our approach achieves SOTA reconstruction accuracy while only employing 66% number of Gaussians, leading to 20% faster reconstruction speed.
arXiv Detail & Related papers (2024-03-29T13:16:05Z) - RGBD GS-ICP SLAM [1.3108652488669732]
We propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS)
Experimental results demonstrate the effectiveness of our approach, showing an incredibly fast speed up to 107 FPS.
arXiv Detail & Related papers (2024-03-19T08:49:48Z) - GaussNav: Gaussian Splatting for Visual Navigation [92.13664084464514]
Instance ImageGoal Navigation (IIN) requires an agent to locate a specific object depicted in a goal image within an unexplored environment.
We propose a new framework for IIN, Gaussian Splatting for Visual Navigation (GaussNav), which constructs a novel map representation based on 3D Gaussian Splatting (3DGS)
Our GaussNav framework demonstrates a significant performance improvement, with Success weighted by Path Length (SPL) increasing from 0.347 to 0.578 on the challenging Habitat-Matterport 3D (HM3D) dataset.
arXiv Detail & Related papers (2024-03-18T09:56:48Z) - 3DGS-ReLoc: 3D Gaussian Splatting for Map Representation and Visual ReLocalization [13.868258945395326]
This paper presents a novel system designed for 3D mapping and visual relocalization using 3D Gaussian Splatting.
Our proposed method uses LiDAR and camera data to create accurate and visually plausible representations of the environment.
arXiv Detail & Related papers (2024-03-17T23:06:12Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [48.190398577764284]
SplaTAM is an approach to enable high-fidelity reconstruction from a single unposed RGB-D camera.
It employs a simple online tracking and mapping system tailored to the underlying Gaussian representation.
Experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods.
arXiv Detail & Related papers (2023-12-04T18:53:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.