HGS-Mapping: Online Dense Mapping Using Hybrid Gaussian Representation in Urban Scenes
- URL: http://arxiv.org/abs/2403.20159v1
- Date: Fri, 29 Mar 2024 13:16:05 GMT
- Title: HGS-Mapping: Online Dense Mapping Using Hybrid Gaussian Representation in Urban Scenes
- Authors: Ke Wu, Kaizhao Zhang, Zhiwei Zhang, Shanshuai Yuan, Muer Tie, Julong Wei, Zijun Xu, Jieru Zhao, Zhongxue Gan, Wenchao Ding,
- Abstract summary: We propose HGS-Mapping, an online dense mapping framework in large-scale urban scenes.
We are the first to integrate Gaussian representation into online dense mapping of urban scenes.
Our approach achieves SOTA reconstruction accuracy while only employing 66% number of Gaussians, leading to 20% faster reconstruction speed.
- Score: 9.698226248064454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online dense mapping of urban scenes forms a fundamental cornerstone for scene understanding and navigation of autonomous vehicles. Recent advancements in mapping methods are mainly based on NeRF, whose rendering speed is too slow to meet online requirements. 3D Gaussian Splatting (3DGS), with its rendering speed hundreds of times faster than NeRF, holds greater potential in online dense mapping. However, integrating 3DGS into a street-view dense mapping framework still faces two challenges, including incomplete reconstruction due to the absence of geometric information beyond the LiDAR coverage area and extensive computation for reconstruction in large urban scenes. To this end, we propose HGS-Mapping, an online dense mapping framework in unbounded large-scale scenes. To attain complete construction, our framework introduces Hybrid Gaussian Representation, which models different parts of the entire scene using Gaussians with distinct properties. Furthermore, we employ a hybrid Gaussian initialization mechanism and an adaptive update method to achieve high-fidelity and rapid reconstruction. To the best of our knowledge, we are the first to integrate Gaussian representation into online dense mapping of urban scenes. Our approach achieves SOTA reconstruction accuracy while only employing 66% number of Gaussians, leading to 20% faster reconstruction speed.
Related papers
- PG-SAG: Parallel Gaussian Splatting for Fine-Grained Large-Scale Urban Buildings Reconstruction via Semantic-Aware Grouping [6.160345720038265]
We introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and kernel optimization.
Experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction.
arXiv Detail & Related papers (2025-01-03T07:40:16Z) - CoSurfGS:Collaborative 3D Surface Gaussian Splatting with Distributed Learning for Large Scene Reconstruction [68.81212850946318]
We propose a multi-agent collaborative fast 3DGS surface reconstruction framework based on distributed learning for large-scale surface reconstruction.
Specifically, we develop local model compression (LMC) and model aggregation schemes (MAS) to achieve high-quality surface representation of large scenes.
Our proposed method can achieve fast and scalable high-fidelity surface reconstruction and photorealistic rendering.
arXiv Detail & Related papers (2024-12-23T14:31:15Z) - GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction [79.42244344704154]
GausSurf employs geometry guidance from multi-view consistency in texture-rich areas and normal priors in texture-less areas of a scene.
Our method surpasses state-of-the-art methods in terms of reconstruction quality and computation time.
arXiv Detail & Related papers (2024-11-29T03:54:54Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - OG-Mapping: Octree-based Structured 3D Gaussians for Online Dense Mapping [19.176488228253483]
3DGS has recently demonstrated promising advancements in RGB-D online dense mapping.
Existing methods excessively rely on per-pixel depth cues to perform map densification.
We introduce OG-Mapping, which leverages the robust scene structural representation capability of sparse octrees.
arXiv Detail & Related papers (2024-08-30T12:01:59Z) - IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
arXiv Detail & Related papers (2024-08-02T09:07:31Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes [24.227745405760697]
We propose a hybrid optimization method named HO-Gaussian, which combines a grid-based volume with the 3DGS pipeline.
Results on widely used autonomous driving datasets demonstrate that HO-Gaussian achieves photo-realistic rendering in real-time on multi-camera urban datasets.
arXiv Detail & Related papers (2024-03-29T07:58:21Z) - SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [48.190398577764284]
SplaTAM is an approach to enable high-fidelity reconstruction from a single unposed RGB-D camera.
It employs a simple online tracking and mapping system tailored to the underlying Gaussian representation.
Experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods.
arXiv Detail & Related papers (2023-12-04T18:53:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.