Spread complexity in saddle-dominated scrambling
- URL: http://arxiv.org/abs/2312.12593v3
- Date: Thu, 23 May 2024 18:04:26 GMT
- Title: Spread complexity in saddle-dominated scrambling
- Authors: Kyoung-Bum Huh, Hyun-Sik Jeong, Juan F. Pedraza,
- Abstract summary: We study the spread complexity of the thermofield double state within emphintegrable systems that exhibit saddle-dominated scrambling.
Applying the Lanczos algorithm, our numerical investigation reveals that the spread complexity in these systems exhibits features reminiscent of emphchaotic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the concept of spread complexity, Krylov complexity for states, has been introduced as a measure of the complexity and chaoticity of quantum systems. In this paper, we study the spread complexity of the thermofield double state within \emph{integrable} systems that exhibit saddle-dominated scrambling. Specifically, we focus on the Lipkin-Meshkov-Glick model and the inverted harmonic oscillator as representative examples of quantum mechanical systems featuring saddle-dominated scrambling. Applying the Lanczos algorithm, our numerical investigation reveals that the spread complexity in these systems exhibits features reminiscent of \emph{chaotic} systems, displaying a distinctive ramp-peak-slope-plateau pattern. Our results indicate that, although spread complexity serves as a valuable probe, accurately diagnosing true quantum chaos generally necessitates additional physical input. We also explore the relationship between spread complexity, the spectral form factor, and the transition probability within the Krylov space. We provide analytical confirmation of our numerical results, validating the Ehrenfest theorem of complexity and identifying a distinct quadratic behavior in the early-time regime of spread complexity.
Related papers
- Spread complexity and quantum chaos for periodically driven spin chains [0.0]
We study the dynamics of spread complexity for quantum maps using the Arnoldi iterative procedure.
We find distinctive behaviour of the Arnoldi coefficients and spread complexity for regular vs. chaotic dynamics.
arXiv Detail & Related papers (2024-05-25T11:17:43Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Krylov Complexity of Fermionic and Bosonic Gaussian States [9.194828630186072]
This paper focuses on emphKrylov complexity, a specialized form of quantum complexity.
It offers an unambiguous and intrinsically meaningful assessment of the spread of a quantum state over all possible bases.
arXiv Detail & Related papers (2023-09-19T07:32:04Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Krylov Localization and suppression of complexity [0.0]
We investigate Krylov complexity for the case of interacting integrable models at finite size.
We find that complexity saturation is suppressed as compared to chaotic systems.
We demonstrate this behavior for an interacting integrable model, the XXZ spin chain.
arXiv Detail & Related papers (2021-12-22T18:45:32Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Complexity from the Reduced Density Matrix: a new Diagnostic for Chaos [0.0]
We take a stride to analyze open quantum systems by using complexity.
We propose a new diagnostic of quantum chaos from complexity based on the reduced density matrix.
arXiv Detail & Related papers (2020-11-09T19:33:57Z) - On estimating the entropy of shallow circuit outputs [49.1574468325115]
Estimating the entropy of probability distributions and quantum states is a fundamental task in information processing.
We show that entropy estimation for distributions or states produced by either log-depth circuits or constant-depth circuits with gates of bounded fan-in and unbounded fan-out is at least as hard as the Learning with Errors problem.
arXiv Detail & Related papers (2020-02-27T15:32:08Z) - Aspects of The First Law of Complexity [0.0]
We investigate the first law of complexity proposed in arXiv:1903.04511, i.e., the variation of complexity when the target state is perturbed.
Based on Nielsen's geometric approach to quantum circuit complexity, we find the variation only depends on the end of the optimal circuit.
arXiv Detail & Related papers (2020-02-13T21:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.