Transfer Learning with Active Sampling for Rapid Training and Calibration in BCI-P300 Across Health States and Multi-centre Data
- URL: http://arxiv.org/abs/2412.17833v1
- Date: Sat, 14 Dec 2024 14:20:21 GMT
- Title: Transfer Learning with Active Sampling for Rapid Training and Calibration in BCI-P300 Across Health States and Multi-centre Data
- Authors: Christian Flores, Marcelo Contreras, Ichiro Macedo, Javier Andreu-Perez,
- Abstract summary: Machine learning and deep learning advancements have boosted Brain-Computer Interface (BCI) performance.
Their wide-scale applicability is limited due to factors like individual health, hardware variations, and cultural differences affecting neural data.
We propose P300 wave detection in BCIs employing a convolutional neural network fitted with adaptive transfer learning.
- Score: 0.13124513975412253
- License:
- Abstract: Machine learning and deep learning advancements have boosted Brain-Computer Interface (BCI) performance, but their wide-scale applicability is limited due to factors like individual health, hardware variations, and cultural differences affecting neural data. Studies often focus on uniform single-site experiments in uniform settings, leading to high performance that may not translate well to real-world diversity. Deep learning models aim to enhance BCI classification accuracy, and transfer learning has been suggested to adapt models to individual neural patterns using a base model trained on others' data. This approach promises better generalizability and reduced overfitting, yet challenges remain in handling diverse and imbalanced datasets from different equipment, subjects, multiple centres in different countries, and both healthy and patient populations for effective model transfer and tuning. In a setting characterized by maximal heterogeneity, we proposed P300 wave detection in BCIs employing a convolutional neural network fitted with adaptive transfer learning based on Poison Sampling Disk (PDS) called Active Sampling (AS), which flexibly adjusts the transition from source data to the target domain. Our results reported for subject adaptive with 40% of adaptive fine-tuning that the averaged classification accuracy improved by 5.36% and standard deviation reduced by 12.22% using two distinct, internationally replicated datasets. These results outperformed in classification accuracy, computational time, and training efficiency, mainly due to the proposed Active Sampling (AS) method for transfer learning.
Related papers
- iFuzzyTL: Interpretable Fuzzy Transfer Learning for SSVEP BCI System [24.898026682692688]
This study explores advanced classification techniques leveraging interpretable fuzzy transfer learning (iFuzzyTL)
iFuzzyTL refines input signal processing and classification in a human-interpretable format by integrating fuzzy inference systems and attention mechanisms.
The model's efficacy is demonstrated across three datasets.
arXiv Detail & Related papers (2024-10-16T06:07:23Z) - Probing Perfection: The Relentless Art of Meddling for Pulmonary Airway Segmentation from HRCT via a Human-AI Collaboration Based Active Learning Method [13.384578466263566]
In pulmonary tracheal segmentation, the scarcity of annotated data is a prevalent issue.
Deep Learning (DL) methods face challenges: the opacity of 'black box' models and the need for performance enhancement.
We address these challenges by combining diverse query strategies with various DL models.
arXiv Detail & Related papers (2024-07-03T23:27:53Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - Uncertainty-aware Sampling for Long-tailed Semi-supervised Learning [89.98353600316285]
We introduce uncertainty into the modeling process for pseudo-label sampling, taking into account that the model performance on the tailed classes varies over different training stages.
This approach allows the model to perceive the uncertainty of pseudo-labels at different training stages, thereby adaptively adjusting the selection thresholds for different classes.
Compared to other methods such as the baseline method FixMatch, UDTS achieves an increase in accuracy of at least approximately 5.26%, 1.75%, 9.96%, and 1.28% on the natural scene image datasets.
arXiv Detail & Related papers (2024-01-09T08:59:39Z) - Reducing Intraspecies and Interspecies Covariate Shift in Traumatic
Brain Injury EEG of Humans and Mice Using Transfer Euclidean Alignment [4.264615907591813]
High variability across subjects poses a significant challenge when it comes to deploying machine learning models for classification tasks in the real world.
In such instances, machine learning models that exhibit exceptional performance on a specific dataset may not necessarily demonstrate similar proficiency when applied to a distinct dataset for the same task.
We introduce Transfer Euclidean Alignment - a transfer learning technique to tackle the problem of the robustness of human biomedical data for training deep learning models.
arXiv Detail & Related papers (2023-10-03T19:48:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Towards physiology-informed data augmentation for EEG-based BCIs [24.15108821320151]
We suggest a novel technique for augmenting the training data by generating new data from the data set at hand.
In this manuscript, we explain the method and show first preliminary results for participant-independent motor-imagery classification.
arXiv Detail & Related papers (2022-03-27T20:59:40Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
Due to the mismatch of statistical distributions of acoustic speech between training and testing sets, the performance of spoken language identification (SLID) could be drastically degraded.
We propose an unsupervised neural adaptation model to deal with the distribution mismatch problem for SLID.
arXiv Detail & Related papers (2020-12-24T07:37:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.