Coordinated Power Smoothing Control for Wind Storage Integrated System with Physics-informed Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2412.17838v1
- Date: Tue, 17 Dec 2024 11:37:46 GMT
- Title: Coordinated Power Smoothing Control for Wind Storage Integrated System with Physics-informed Deep Reinforcement Learning
- Authors: Shuyi Wang, Huan Zhao, Yuji Cao, Zibin Pan, Guolong Liu, Gaoqi Liang, Junhua Zhao,
- Abstract summary: Wind Storage Integrated System with Power Smoothing Control (PSC) has emerged as a promising solution to ensure both efficient and reliable wind energy generation.
Existing PSC strategies overlook the intricate and distinct control interplay between batteries and wind turbines, and lack consideration of wake effect and battery degradation cost.
In this paper, a novel coordinated control framework with hierarchical levels is devised to address these challenges effectively.
- Score: 13.266525968718275
- License:
- Abstract: The Wind Storage Integrated System with Power Smoothing Control (PSC) has emerged as a promising solution to ensure both efficient and reliable wind energy generation. However, existing PSC strategies overlook the intricate interplay and distinct control frequencies between batteries and wind turbines, and lack consideration of wake effect and battery degradation cost. In this paper, a novel coordinated control framework with hierarchical levels is devised to address these challenges effectively, which integrates the wake model and battery degradation model. In addition, after reformulating the problem as a Markov decision process, the multi-agent reinforcement learning method is introduced to overcome the bi-level characteristic of the problem. Moreover, a Physics-informed Neural Network-assisted Multi-agent Deep Deterministic Policy Gradient (PAMA-DDPG) algorithm is proposed to incorporate the power fluctuation differential equation and expedite the learning process. The effectiveness of the proposed methodology is evaluated through simulations conducted in four distinct scenarios using WindFarmSimulator (WFSim). The results demonstrate that the proposed algorithm facilitates approximately an 11% increase in total profit and a 19% decrease in power fluctuation compared to the traditional methods, thereby addressing the dual objectives of economic efficiency and grid-connected energy reliability.
Related papers
- Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
This paper proposes a reinforcement learning (RL) approach to address the challenges of dynamic load scheduling.
Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling.
arXiv Detail & Related papers (2024-10-23T09:16:22Z) - Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
Federated learning (FL) requires edge devices to perform local training and exchange information with a parameter server.
A critical challenge in practical FL systems is the rapid energy depletion of battery-limited edge devices.
We apply energy harvesting technique in FL systems to extract ambient energy for continuously powering edge devices.
arXiv Detail & Related papers (2024-05-17T03:41:40Z) - Safety Constrained Multi-Agent Reinforcement Learning for Active Voltage Control [34.95810473913879]
We formalize the active voltage control problem as a constrained Markov game and propose a safety-constrained MARL algorithm.
We evaluate our approach in the power distribution network simulation environment with real-world scale scenarios.
arXiv Detail & Related papers (2024-05-14T09:03:00Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - A novel ANROA based control approach for grid-tied multi-functional
solar energy conversion system [0.0]
An adaptive control approach for a three-phase grid-interfaced solar photovoltaic system is proposed and discussed.
This method incorporates an Adaptive Neuro-fuzzy Inference System (ANFIS) with a Rain Optimization Algorithm (ROA)
Avoiding power quality problems including voltage fluctuations, harmonics, and flickers as well as unbalanced loads and reactive power usage is the major goal.
arXiv Detail & Related papers (2024-01-26T09:12:39Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner.
Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified.
The current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization.
arXiv Detail & Related papers (2023-06-25T13:10:38Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Energy Management of Multi-mode Plug-in Hybrid Electric Vehicle using
Multi-agent Deep Reinforcement Learning [6.519522573636577]
Multi-mode plug-in hybrid electric vehicle (PHEV) technology is one of the pathways making contributions to decarbonization.
This paper studies a multi-agent deep reinforcement learning (MADRL) control method for energy management of the multi-mode PHEV.
Using the unified DDPG settings and a relevance ratio of 0.2, the proposed MADRL system can save up to 4% energy compared to the single-agent learning system and up to 23.54% energy compared to the conventional rule-based system.
arXiv Detail & Related papers (2023-03-16T21:31:55Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
We propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks.
In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency.
arXiv Detail & Related papers (2022-06-08T07:48:42Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.