Reducing QUBO Density by Factoring Out Semi-Symmetries
- URL: http://arxiv.org/abs/2412.17841v2
- Date: Fri, 27 Dec 2024 16:49:23 GMT
- Title: Reducing QUBO Density by Factoring Out Semi-Symmetries
- Authors: Jonas Nüßlein, Leo Sünkel, Jonas Stein, Tobias Rohe, Daniëlle Schuman, Sebastian Feld, Corey O'Meara, Giorgio Cortiana, Claudia Linnhoff-Popien,
- Abstract summary: We introduce the concept of textitsemi-symmetries in QUBO matrices.
We show that our algorithm reduces the number of couplings and circuit depth by up to $45%.
- Score: 4.581191399651181
- License:
- Abstract: Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function $x^T Q x$, where $Q$ is a QUBO matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in $Q$, contributing to significant computational and error-related challenges. To address this, we introduce the concept of \textit{semi-symmetries} in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into ancilla qubits. \textit{Semi-symmetries} frequently arise in optimization problems such as \textit{Maximum Clique}, \textit{Hamilton Cycles}, \textit{Graph Coloring}, and \textit{Graph Isomorphism}. We theoretically demonstrate that the modified QUBO matrix $Q_{\text{mod}}$ retains the same energy spectrum as the original $Q$. Experimental evaluations on the aforementioned problems show that our algorithm reduces the number of couplings and QAOA circuit depth by up to $45\%$. For Quantum Annealing, these reductions also lead to sparser problem embeddings, shorter qubit chains and better performance. This work highlights the utility of exploiting QUBO matrix structure to optimize quantum algorithms, advancing their scalability and practical applicability to real-world combinatorial problems.
Related papers
- Reducing QAOA Circuit Depth by Factoring out Semi-Symmetries [4.958204128486634]
We show that our modified QUBO matrix $Q_Hamilton$ describes the same energy spectrum as the original $Q$.
Our algorithm achieved reductions in the number of couplings by up to $49%$ and in circuit depth by up to $41%$.
arXiv Detail & Related papers (2024-11-13T18:04:01Z) - Encodings of the weighted MAX k-CUT on qubit systems [0.0]
This paper explores encoding methods for the weighted MAX k-CUT problem on qubit systems.
We examine various encoding schemes and evaluate the efficiency of these approaches.
Numerical simulations on weighted and unweighted graph instances demonstrate the effectiveness of these encoding schemes.
arXiv Detail & Related papers (2024-11-13T13:21:35Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Symmetries and Dimension Reduction in Quantum Approximate Optimization
Algorithm [1.3469999282609788]
We focus on the generalized formulation of optimization problems defined on the sets of $n-element $d$-ary strings.
Our main contribution encompasses dimension for the originally proposed QAOA.
Restricting the algorithm to spaces of smaller dimension may lead to significant acceleration of both quantum and classical simulation of circuits.
arXiv Detail & Related papers (2023-09-25T00:35:40Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - An entanglement perspective on the quantum approximate optimization
algorithm [0.0]
We study the entanglement growth and spread resulting from randomized and optimized QAOA circuits.
We also investigate the entanglement spectrum in connection with random matrix theory.
arXiv Detail & Related papers (2022-06-14T17:37:44Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.