論文の概要: Enhancing Knowledge Distillation for LLMs with Response-Priming Prompting
- arxiv url: http://arxiv.org/abs/2412.17846v1
- Date: Wed, 18 Dec 2024 20:41:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:41.398686
- Title: Enhancing Knowledge Distillation for LLMs with Response-Priming Prompting
- Title(参考訳): 応答プライミング・プロンプティングによるLCMの知識蒸留の促進
- Authors: Vijay Goyal, Mustafa Khan, Aprameya Tirupati, Harveer Saini, Michael Lam, Kevin Zhu,
- Abstract要約: そこで本研究では,学生モデルの性能向上のための新しい応答プライシング手法を提案する。
Llama 3.1 405B 教師モデルから知識を抽出し,より小さな Llama 3.1 8B 教師モデルを微調整する。
その結果, 蒸留したLlama 3.1 8BインストラクトのGSM8Kは55%向上した。
- 参考スコア(独自算出の注目度): 1.9461727843485295
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing (NLP) tasks. However, these models are often difficult to deploy due to significant computational requirements and resource constraints. Knowledge distillation (KD) is an effective technique for transferring the performance of larger LLMs to smaller models. Traditional KD methods primarily focus on the direct output of the teacher model, with little emphasis on the role of prompting during knowledge transfer. In this paper, we propose a set of novel response-priming prompting strategies applied in the knowledge distillation pipeline to enhance the performance of student models. Our approach fine-tunes a smaller Llama 3.1 8B Instruct model by distilling knowledge from a quantized Llama 3.1 405B Instruct teacher model. We apply LoRA optimization and evaluate on the GSM8K benchmark. Experimental results demonstrate that integrating reasoning-eliciting prompting into the proposed KD pipeline significantly improves student model performance, offering an efficient way to deploy powerful models in resource-constrained environments. We find that Ground Truth prompting results in a 55\% performance increase on GSM8K for a distilled Llama 3.1 8B Instruct compared to the same model distilled without prompting. A thorough investigation into the self-attention layers of the student models indicates that the more successful prompted models tend to exhibit certain positive behaviors inside their attention heads which can be tied to their increased accuracy. Our implementation can be found at https://github.com/alonso130r/knowledge-distillation.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い自然言語処理(NLP)タスクにおいて顕著な性能を示した。
しかしながら、これらのモデルは、大きな計算要求とリソース制約のため、しばしばデプロイが困難である。
知識蒸留(KD)は,より大きなLLMの性能をより小さなモデルに伝達する有効な技術である。
従来のKD手法は、主に教師モデルの直接的なアウトプットに焦点を合わせており、知識伝達時の促進の役割にはほとんど重点を置いていない。
本稿では,学生モデルの性能向上を図るため,知識蒸留パイプラインに適用した新しいレスポンスプライシング促進戦略を提案する。
Llama 3.1 405B 教師モデルから知識を抽出し,より小さな Llama 3.1 8B 教師モデルを微調整する。
我々は,LoRA最適化を適用し,GSM8Kベンチマークで評価する。
実験結果から,提案したKDパイプラインへの推論の緩和により,学生モデルの性能が大幅に向上し,資源制約のある環境に強力なモデルをデプロイする効率的な方法が提供されることがわかった。
その結果, 蒸留したLlama 3.1 8BインストラクトのGSM8Kに対するグラウンド・トラス・プロジェクションは, プロジェクションを伴わずに蒸留したモデルと比較すると, GSM8Kの55%の性能向上が得られた。
学生モデルの自己注意層に関する徹底的な調査は、より成功した刺激モデルが注意頭の中で一定の肯定的な行動を示す傾向にあり、それはその精度の上昇に結びつくことを示唆している。
実装はhttps://github.com/alonso130r/knowledge-distillationで確認できます。
関連論文リスト
- Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
本研究では,大規模言語モデルと特徴アライメントに基づく知識蒸留アルゴリズムを提案する。
提案モデルは, パープレキシティ, BLEU, ROUGE, CER などの評価指標を用いて, 最先端の GPT-4 モデルに非常に近い性能を示す。
論文 参考訳(メタデータ) (2024-12-27T04:37:06Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
LLM(Large Language Models)のデプロイメントと適用は、そのメモリ非効率性、計算要求、API推論の高コストによって妨げられている。
LLMの能力をより小さなモデルに伝達する伝統的な蒸留法は、知識が十分に伝達されているかどうかを判断できないことが多い。
本稿では,アノテーションコストとモデル性能のバランスを最適化するために,アクティブラーニング戦略を用いた説明誘導型ELAD(Explaination-Guided LLMs Active Distillation)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-20T15:47:59Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - MiniLLM: Knowledge Distillation of Large Language Models [112.93051247165089]
知識蒸留(KD)は,大規模言語モデル(LLM)の高い計算要求を低減させる,有望な手法である。
より小さな言語モデルにLPMを蒸留するKD手法を提案する。
提案手法は,120Mから13Bのパラメータを持つ異なるモデルファミリに対してスケーラブルである。
論文 参考訳(メタデータ) (2023-06-14T14:44:03Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
本研究では,Mixture-of-Experts構造を用いてモデルキャパシティと推論速度を向上させるMoEBERTを提案する。
自然言語理解と質問応答タスクにおけるMoEBERTの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2022-04-15T23:19:37Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
浅層層における機能学習を監督するために深層の特徴を用いるセルフフィーチャー正規化(sfr)を提案する。
まず,局所的な特徴にマッチする一般化l2損失と,チャネル次元においてより集中的に蒸留する多対一の手法を用いる。
論文 参考訳(メタデータ) (2021-03-12T15:29:00Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
本稿では,データスカース領域BERT知識蒸留のための拡張学習法を提案する。
提案手法が4つの異なるタスクにおける最先端のベースラインを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-01-20T13:07:39Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。