Enhancing Knowledge Distillation for LLMs with Response-Priming Prompting
- URL: http://arxiv.org/abs/2412.17846v1
- Date: Wed, 18 Dec 2024 20:41:44 GMT
- Title: Enhancing Knowledge Distillation for LLMs with Response-Priming Prompting
- Authors: Vijay Goyal, Mustafa Khan, Aprameya Tirupati, Harveer Saini, Michael Lam, Kevin Zhu,
- Abstract summary: We propose a set of novel response-priming prompting strategies to enhance the performance of student models.
Our approach fine-tunes a smaller Llama 3.1 8B Instruct model by distilling knowledge from a quantized Llama 3.1 405B Instruct teacher model.
We find that Ground Truth prompting results in a 55% performance increase on GSM8K for a distilled Llama 3.1 8B Instruct.
- Score: 1.9461727843485295
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing (NLP) tasks. However, these models are often difficult to deploy due to significant computational requirements and resource constraints. Knowledge distillation (KD) is an effective technique for transferring the performance of larger LLMs to smaller models. Traditional KD methods primarily focus on the direct output of the teacher model, with little emphasis on the role of prompting during knowledge transfer. In this paper, we propose a set of novel response-priming prompting strategies applied in the knowledge distillation pipeline to enhance the performance of student models. Our approach fine-tunes a smaller Llama 3.1 8B Instruct model by distilling knowledge from a quantized Llama 3.1 405B Instruct teacher model. We apply LoRA optimization and evaluate on the GSM8K benchmark. Experimental results demonstrate that integrating reasoning-eliciting prompting into the proposed KD pipeline significantly improves student model performance, offering an efficient way to deploy powerful models in resource-constrained environments. We find that Ground Truth prompting results in a 55\% performance increase on GSM8K for a distilled Llama 3.1 8B Instruct compared to the same model distilled without prompting. A thorough investigation into the self-attention layers of the student models indicates that the more successful prompted models tend to exhibit certain positive behaviors inside their attention heads which can be tied to their increased accuracy. Our implementation can be found at https://github.com/alonso130r/knowledge-distillation.
Related papers
- Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
This study proposes a knowledge distillation algorithm based on large language models and feature alignment.
The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
arXiv Detail & Related papers (2024-12-27T04:37:06Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
The deployment and application of Large Language Models (LLMs) is hindered by their memory inefficiency, computational demands, and the high costs of API inferences.
Traditional distillation methods, which transfer the capabilities of LLMs to smaller models, often fail to determine whether the knowledge has been sufficiently transferred.
We propose an Explanation-Guided LLMs Active Distillation (ELAD) framework that employs an active learning strategy to optimize the balance between annotation costs and model performance.
arXiv Detail & Related papers (2024-02-20T15:47:59Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - MiniLLM: Knowledge Distillation of Large Language Models [112.93051247165089]
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs)
We propose a KD approach that distills LLMs into smaller language models.
Our method is scalable for different model families with 120M to 13B parameters.
arXiv Detail & Related papers (2023-06-14T14:44:03Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
We propose a method to learn to augment for data-scarce domain BERT knowledge distillation.
We show that the proposed method significantly outperforms state-of-the-art baselines on four different tasks.
arXiv Detail & Related papers (2021-01-20T13:07:39Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.