An Empirical Study on Eliciting and Improving R1-like Reasoning Models
- URL: http://arxiv.org/abs/2503.04548v1
- Date: Thu, 06 Mar 2025 15:34:27 GMT
- Title: An Empirical Study on Eliciting and Improving R1-like Reasoning Models
- Authors: Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, Ji-Rong Wen,
- Abstract summary: scaling RL training has become a central technique for implementing such reasoning models.<n>We demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models.<n>We also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models.
- Score: 90.52239241349504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this report, we present the third technical report on the development of slow-thinking models as part of the STILL project. As the technical pathway becomes clearer, scaling RL training has become a central technique for implementing such reasoning models. We systematically experiment with and document the effects of various factors influencing RL training, conducting experiments on both base models and fine-tuned models. Specifically, we demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models, enhancing both response length and test accuracy. Furthermore, we show that even when a model like DeepSeek-R1-Distill-Qwen-1.5B has already achieved a high performance level, it can be further refined through RL training, reaching an accuracy of 39.33% on AIME 2024. Beyond RL training, we also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models. This approach achieves a remarkable accuracy of 86.67% with greedy search on AIME 2024, underscoring its effectiveness in enhancing model capabilities. We release our resources at the STILL project website: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
Related papers
- Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model? [67.30809748319486]
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs.
We re-examine this assumption by measuring the pass@textitk metric with large values of textitk to explore the reasoning capability boundary of the models.
We find that the RL does emphnot, in fact, elicit fundamentally new reasoning patterns.
arXiv Detail & Related papers (2025-04-18T17:59:56Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.
We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z) - Understanding R1-Zero-Like Training: A Critical Perspective [38.515771096651356]
We critically examine R1-Zero-like training by analyzing its two core components: base models and RL.
We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance.
We present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model.
arXiv Detail & Related papers (2025-03-26T17:59:14Z) - LIMR: Less is More for RL Scaling [25.477841726836836]
We introduce Learning Impact Measurement (LIM), an automated method to evaluate and prioritize training samples.<n>Our method achieves comparable or even superior performance using only 1,389 samples versus the full 8,523 samples dataset.<n>For reproducible research and future innovation, we are open-sourcing LIMR, including implementation of LIM, training and evaluation code, curated datasets, and trained models.
arXiv Detail & Related papers (2025-02-17T15:13:29Z) - Enhancing Knowledge Distillation for LLMs with Response-Priming Prompting [1.9461727843485295]
We propose a set of novel response-priming prompting strategies to enhance the performance of student models.<n>Our approach fine-tunes a smaller Llama 3.1 8B Instruct model by distilling knowledge from a quantized Llama 3.1 405B Instruct teacher model.<n>We find that Ground Truth prompting results in a 55% performance increase on GSM8K for a distilled Llama 3.1 8B Instruct.
arXiv Detail & Related papers (2024-12-18T20:41:44Z) - Does RLHF Scale? Exploring the Impacts From Data, Model, and Method [83.53178716807776]
This study explores the scaling properties of Reinforcement Learning from Human Feedback in Large Language Models.<n>We analyze key components in the RLHF framework--model size, data composition, and inference budget--and their impacts on performance.
arXiv Detail & Related papers (2024-12-08T17:19:48Z) - RLInspect: An Interactive Visual Approach to Assess Reinforcement Learning Algorithm [0.0]
Reinforcement Learning (RL) is a rapidly growing area of machine learning.
Assessing RL models can be challenging, which makes it difficult to interpret their behaviour.
We have developed RLInspect, an interactive visual analytic tool.
It takes into account different components of the RL model - state, action, agent architecture and reward, and provides a more comprehensive view of the RL training.
arXiv Detail & Related papers (2024-11-13T07:24:14Z) - Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining [49.730897226510095]
We introduce JOWA: Jointly-Reinforced World-Action model, an offline model-based RL agent pretrained on Atari games with 6 billion tokens data.<n>Our largest agent, with 150 million parameters, 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange.
arXiv Detail & Related papers (2024-10-01T10:25:03Z) - Enhancing Analogical Reasoning in the Abstraction and Reasoning Corpus via Model-Based RL [6.143939145442195]
We show that model-based reinforcement learning is a suitable approach for the task of analogical reasoning.
We compare DreamerV3, a model-based RL method, with Proximal Policy Optimization, a model-free RL method.
Our results indicate that model-based RL not only outperforms model-free RL in learning and generalizing from single tasks but also shows significant advantages in reasoning across similar tasks.
arXiv Detail & Related papers (2024-08-27T08:15:20Z) - Learning to Prune Deep Neural Networks via Reinforcement Learning [64.85939668308966]
PuRL is a deep reinforcement learning based algorithm for pruning neural networks.
It achieves sparsity and accuracy comparable to current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-09T13:06:07Z) - Stealing Deep Reinforcement Learning Models for Fun and Profit [33.64948529132546]
This paper presents the first model extraction attack against Deep Reinforcement Learning (DRL)
It enables an external adversary to precisely recover a black-box DRL model only from its interaction with the environment.
arXiv Detail & Related papers (2020-06-09T03:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.