Stability Bounds for the Unfolded Forward-Backward Algorithm
- URL: http://arxiv.org/abs/2412.17888v1
- Date: Mon, 23 Dec 2024 11:55:41 GMT
- Title: Stability Bounds for the Unfolded Forward-Backward Algorithm
- Authors: Emilie Chouzenoux, Cecile Della Valle, Jean-Christophe Pesquet,
- Abstract summary: We consider a neural network architecture designed to solve inverse problems where the degradation operator is linear and known.
robustness of this inversion method to input perturbations is analyzed theoretically.
A key novelty of our work lies in examining the robustness of the proposed network to perturbations in its bias.
- Score: 13.537414663819971
- License:
- Abstract: We consider a neural network architecture designed to solve inverse problems where the degradation operator is linear and known. This architecture is constructed by unrolling a forward-backward algorithm derived from the minimization of an objective function that combines a data-fidelity term, a Tikhonov-type regularization term, and a potentially nonsmooth convex penalty. The robustness of this inversion method to input perturbations is analyzed theoretically. Ensuring robustness complies with the principles of inverse problem theory, as it ensures both the continuity of the inversion method and the resilience to small noise - a critical property given the known vulnerability of deep neural networks to adversarial perturbations. A key novelty of our work lies in examining the robustness of the proposed network to perturbations in its bias, which represents the observed data in the inverse problem. Additionally, we provide numerical illustrations of the analytical Lipschitz bounds derived in our analysis.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Cycle Consistency-based Uncertainty Quantification of Neural Networks in
Inverse Imaging Problems [10.992084413881592]
Uncertainty estimation is critical for numerous applications of deep neural networks.
We show an uncertainty quantification approach for deep neural networks used in inverse problems based on cycle consistency.
arXiv Detail & Related papers (2023-05-22T09:23:18Z) - To be or not to be stable, that is the question: understanding neural
networks for inverse problems [0.0]
In this paper, we theoretically analyze the trade-off between stability and accuracy of neural networks.
We propose different supervised and unsupervised solutions to increase the network stability and maintain a good accuracy.
arXiv Detail & Related papers (2022-11-24T16:16:40Z) - Transformer Meets Boundary Value Inverse Problems [4.165221477234755]
Transformer-based deep direct sampling method is proposed for solving a class of boundary value inverse problem.
A real-time reconstruction is achieved by evaluating the learned inverse operator between carefully designed data and reconstructed images.
arXiv Detail & Related papers (2022-09-29T17:45:25Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Convergence Analysis and Implicit Regularization of Feedback Alignment
for Deep Linear Networks [27.614609336582568]
We theoretically analyze the Feedback Alignment (FA) algorithm, an efficient alternative to backpropagation for training neural networks.
We provide convergence guarantees with rates for deep linear networks for both continuous and discrete dynamics.
arXiv Detail & Related papers (2021-10-20T22:57:03Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
arXiv Detail & Related papers (2021-08-25T22:01:01Z) - Towards Understanding Generalization via Decomposing Excess Risk
Dynamics [13.4379473119565]
We analyze the generalization dynamics to derive algorithm-dependent bounds, e.g., stability.
Inspired by the observation that neural networks show a slow convergence rate when fitting noise, we propose decomposing the excess risk dynamics.
Under the decomposition framework, the new bound accords better with the theoretical and empirical evidence compared to the stability-based bound and uniform convergence bound.
arXiv Detail & Related papers (2021-06-11T03:42:45Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.