Causal Composition Diffusion Model for Closed-loop Traffic Generation
- URL: http://arxiv.org/abs/2412.17920v2
- Date: Wed, 05 Feb 2025 16:08:12 GMT
- Title: Causal Composition Diffusion Model for Closed-loop Traffic Generation
- Authors: Haohong Lin, Xin Huang, Tung Phan-Minh, David S. Hayden, Huan Zhang, Ding Zhao, Siddhartha Srinivasa, Eric M. Wolff, Hongge Chen,
- Abstract summary: We introduce the Causal Compositional Diffusion Model (CCDiff), a structure-guided diffusion framework to address these challenges.
We first formulate the learning of controllable and realistic closed-loop simulation as a constrained optimization problem.
Then, CCDiff maximizes controllability while adhering to realism by automatically identifying and injecting causal structures directly into the diffusion process.
- Score: 31.52951126032351
- License:
- Abstract: Simulation is critical for safety evaluation in autonomous driving, particularly in capturing complex interactive behaviors. However, generating realistic and controllable traffic scenarios in long-tail situations remains a significant challenge. Existing generative models suffer from the conflicting objective between user-defined controllability and realism constraints, which is amplified in safety-critical contexts. In this work, we introduce the Causal Compositional Diffusion Model (CCDiff), a structure-guided diffusion framework to address these challenges. We first formulate the learning of controllable and realistic closed-loop simulation as a constrained optimization problem. Then, CCDiff maximizes controllability while adhering to realism by automatically identifying and injecting causal structures directly into the diffusion process, providing structured guidance to enhance both realism and controllability. Through rigorous evaluations on benchmark datasets and in a closed-loop simulator, CCDiff demonstrates substantial gains over state-of-the-art approaches in generating realistic and user-preferred trajectories. Our results show CCDiff's effectiveness in extracting and leveraging causal structures, showing improved closed-loop performance based on key metrics such as collision rate, off-road rate, FDE, and comfort.
Related papers
- Multi-Modality Driven LoRA for Adverse Condition Depth Estimation [61.525312117638116]
We propose Multi-Modality Driven LoRA (MMD-LoRA) for Adverse Condition Depth Estimation.
It consists of two core components: Prompt Driven Domain Alignment (PDDA) and Visual-Text Consistent Contrastive Learning (VTCCL)
It achieves state-of-the-art performance on the nuScenes and Oxford RobotCar datasets.
arXiv Detail & Related papers (2024-12-28T14:23:58Z) - SceneDiffuser: Efficient and Controllable Driving Simulation Initialization and Rollout [30.098214039454927]
Realistic and interactive scene simulation is a key prerequisite for autonomous vehicle (AV) development.
We present SceneDiffuser, a scene-level diffusion prior designed for traffic simulation.
Novel diffusion denoising paradigm amortizes the computational cost of denoising over future simulation steps.
arXiv Detail & Related papers (2024-12-05T18:06:53Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
Controllable and realistic traffic simulation is critical for developing and verifying autonomous vehicles.
Data-driven approaches generate realistic and human-like behaviors, improving transfer from simulated to real-world traffic.
We develop a conditional diffusion model for controllable traffic generation (CTG) that allows users to control desired properties of trajectories at test time.
arXiv Detail & Related papers (2022-10-31T14:44:59Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - CausalAF: Causal Autoregressive Flow for Safety-Critical Driving
Scenario Generation [34.45216283597149]
We propose a flow-based generative framework, Causal Autoregressive Flow (CausalAF)
CausalAF encourages the generative model to uncover and follow the causal relationship among generated objects.
We show that using generated scenarios as additional training samples empirically improves the robustness of autonomous driving algorithms.
arXiv Detail & Related papers (2021-10-26T18:07:48Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.