論文の概要: Analysis of Transferred Pre-Trained Deep Convolution Neural Networks in Breast Masses Recognition
- arxiv url: http://arxiv.org/abs/2412.17959v1
- Date: Mon, 23 Dec 2024 20:16:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:58.588681
- Title: Analysis of Transferred Pre-Trained Deep Convolution Neural Networks in Breast Masses Recognition
- Title(参考訳): 乳房マス認識における伝達前訓練深部畳み込みニューラルネットワークの解析
- Authors: Qusay Shihab Hamad, Hussein Samma, Shahrel Azmin Suandi,
- Abstract要約: 乳腺X線像を良性または悪性と分類し, 術前訓練したCNNにおける層凍結の影響について検討した。
VGG19の冷凍第1ブロックの感度は95.64 %であり、VGG19全体のトレーニングは94.48%であった。
- 参考スコア(独自算出の注目度): 3.3686252536891454
- License:
- Abstract: Breast cancer detection based on pre-trained convolution neural network (CNN) has gained much interest among other conventional computer-based systems. In the past few years, CNN technology has been the most promising way to find cancer in mammogram scans. In this paper, the effect of layer freezing in a pre-trained CNN is investigated for breast cancer detection by classifying mammogram images as benign or malignant. Different VGG19 scenarios have been examined based on the number of convolution layer blocks that have been frozen. There are a total of six scenarios in this study. The primary benefits of this research are twofold: it improves the model's ability to detect breast cancer cases and it reduces the training time of VGG19 by freezing certain layers.To evaluate the performance of these scenarios, 1693 microbiological images of benign and malignant breast cancers were utilized. According to the reported results, the best recognition rate was obtained from a frozen first block of VGG19 with a sensitivity of 95.64 %, while the training of the entire VGG19 yielded 94.48%.
- Abstract(参考訳): 事前訓練された畳み込みニューラルネットワーク(CNN)に基づく乳癌検出は、他のコンピュータベースシステムにおいて大きな関心を集めている。
過去数年間、CNN技術はマンモグラフィースキャンでがんを見つける最も有望な方法であった。
本稿では, 乳腺X線像を良性, 悪性と分類し, 術前訓練したCNNにおける層凍結の影響について検討した。
凍結された畳み込み層ブロックの数に基づいて、異なるVGG19シナリオが検討されている。
この研究には合計6つのシナリオがある。
本研究の主な利点は, 乳がん症例の検出能力の向上と, 特定の層を凍結することによりVGG19の訓練時間を短縮することである。
報告結果によると、VGG19の凍結第1ブロックの感度は95.64 %であり、VGG19全体のトレーニングは94.48%であった。
関連論文リスト
- Early Detection and Classification of Breast Cancer Using Deep Learning Techniques [0.0]
WHOによると、乳がんは世界で最も致命的ながんの1つで、世界中で毎年大量の患者が死亡している。
乳がんの早期発見に自動化を使用することで、人工知能と機械学習技術は最良の結果を得るために実装できる。
論文 参考訳(メタデータ) (2025-01-21T15:39:29Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Breast cancer detection using deep learning [0.0]
本稿では,マイクロ波イメージング画像の再構成画像から乳がんを検出するための深層学習モデルを提案する。
NASNetLargeは、88.41%、27.82%の精度でCNNモデルに使用できる最高のアーキテクチャである。
論文 参考訳(メタデータ) (2023-04-20T15:22:12Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Deep Analysis of Transfer Learning Based Breast Cancer Detection Using
Histopathology Images [0.0]
ディープニューラルネットワーク(Deep Neural Network, DNN)は、乳がんの検出精度を向上させるために一般的に用いられる。
病理組織像のデータセットを用いて,乳がん検出のための事前訓練深達度学習モデルの解析を行った。
転送学習モデルを解析した結果,ResNet50の精度は90.2%,曲線下面積(AUC)は90.0%,リコール率は94.7%,限界損失は3.5%であった。
論文 参考訳(メタデータ) (2023-04-11T07:17:55Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - Classification of Breast Tumours Based on Histopathology Images Using
Deep Features and Ensemble of Gradient Boosting Methods [0.0]
提案するCADシステムの特徴抽出器の主案として,Deep Feature Transfer Learningが用いられている。
Inception-ResNet-v2は乳癌の病理組織像において最も優れた特徴抽出能を示した。
分類段階では,CatBoost,XGBoost,LightGBMのアンサンブルが最も平均精度が高い。
論文 参考訳(メタデータ) (2022-09-03T09:27:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z) - Diagnosis of Breast Cancer Based on Modern Mammography using Hybrid
Transfer Learning [5.835732870341059]
本稿では,乳癌検出のための転写学習プロセスに焦点を当てた。
本稿では,改良VGG 16,残差ネットワーク,移動ネットワークを提案し,実装した。
論文 参考訳(メタデータ) (2020-03-23T05:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。