Analysis of Transferred Pre-Trained Deep Convolution Neural Networks in Breast Masses Recognition
- URL: http://arxiv.org/abs/2412.17959v1
- Date: Mon, 23 Dec 2024 20:16:45 GMT
- Title: Analysis of Transferred Pre-Trained Deep Convolution Neural Networks in Breast Masses Recognition
- Authors: Qusay Shihab Hamad, Hussein Samma, Shahrel Azmin Suandi,
- Abstract summary: The effect of layer freezing in a pre-trained CNN is investigated for breast cancer detection by classifying mammogram images as benign or malignant.
The best recognition rate was obtained from a frozen first block of VGG19 with a sensitivity of 95.64 %, while the training of the entire VGG19 yielded 94.48%.
- Score: 3.3686252536891454
- License:
- Abstract: Breast cancer detection based on pre-trained convolution neural network (CNN) has gained much interest among other conventional computer-based systems. In the past few years, CNN technology has been the most promising way to find cancer in mammogram scans. In this paper, the effect of layer freezing in a pre-trained CNN is investigated for breast cancer detection by classifying mammogram images as benign or malignant. Different VGG19 scenarios have been examined based on the number of convolution layer blocks that have been frozen. There are a total of six scenarios in this study. The primary benefits of this research are twofold: it improves the model's ability to detect breast cancer cases and it reduces the training time of VGG19 by freezing certain layers.To evaluate the performance of these scenarios, 1693 microbiological images of benign and malignant breast cancers were utilized. According to the reported results, the best recognition rate was obtained from a frozen first block of VGG19 with a sensitivity of 95.64 %, while the training of the entire VGG19 yielded 94.48%.
Related papers
- Early Detection and Classification of Breast Cancer Using Deep Learning Techniques [0.0]
Breast cancer is one of the deadliest cancers causing massive number of patients to die annually all over the world according to the WHO.
Using automation for early-age detection of breast cancer, Artificial Intelligence and Machine Learning technologies can be implemented for the best outcome.
arXiv Detail & Related papers (2025-01-21T15:39:29Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Breast cancer detection using deep learning [0.0]
This paper proposes a deep learning model for breast cancer detection from reconstructed images of microwave imaging scan data.
NASNetLarge is the best architecture which can be used for the CNN model with accuracy of 88.41% and loss of 27.82%.
arXiv Detail & Related papers (2023-04-20T15:22:12Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Deep Analysis of Transfer Learning Based Breast Cancer Detection Using
Histopathology Images [0.0]
A Deep Neural Network (DNN) is commonly employed to improve accuracy and breast cancer detection.
We have analyzed pre-trained deep transfer learning models for detecting breast cancer using the 2453 histopathology images dataset.
After analyzing the transfer learning model, we found that ResNet50 outperformed other models, achieving accuracy rates of 90.2%, Area under Curve (AUC) rates of 90.0%, recall rates of 94.7%, and a marginal loss of 3.5%.
arXiv Detail & Related papers (2023-04-11T07:17:55Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - Classification of Breast Tumours Based on Histopathology Images Using
Deep Features and Ensemble of Gradient Boosting Methods [0.0]
Deep feature transfer learning is used as the main idea of the proposed CAD system's feature extractor.
Inception-ResNet-v2 has shown the best feature extraction capability in the case of breast cancer histopathology images.
In the classification phase, the ensemble of CatBoost, XGBoost and LightGBM has provided the best average accuracy.
arXiv Detail & Related papers (2022-09-03T09:27:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - Diagnosis of Breast Cancer Based on Modern Mammography using Hybrid
Transfer Learning [5.835732870341059]
This paper focuses on transfer learning process to detect breast cancer.
Modified VGG 16, residual network, mobile network is proposed and implemented in this paper.
arXiv Detail & Related papers (2020-03-23T05:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.