A Deep Analysis of Transfer Learning Based Breast Cancer Detection Using
Histopathology Images
- URL: http://arxiv.org/abs/2304.05022v1
- Date: Tue, 11 Apr 2023 07:17:55 GMT
- Title: A Deep Analysis of Transfer Learning Based Breast Cancer Detection Using
Histopathology Images
- Authors: Md Ishtyaq Mahmud, Muntasir Mamun, Ahmed Abdelgawad
- Abstract summary: A Deep Neural Network (DNN) is commonly employed to improve accuracy and breast cancer detection.
We have analyzed pre-trained deep transfer learning models for detecting breast cancer using the 2453 histopathology images dataset.
After analyzing the transfer learning model, we found that ResNet50 outperformed other models, achieving accuracy rates of 90.2%, Area under Curve (AUC) rates of 90.0%, recall rates of 94.7%, and a marginal loss of 3.5%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is one of the most common and dangerous cancers in women, while
it can also afflict men. Breast cancer treatment and detection are greatly
aided by the use of histopathological images since they contain sufficient
phenotypic data. A Deep Neural Network (DNN) is commonly employed to improve
accuracy and breast cancer detection. In our research, we have analyzed
pre-trained deep transfer learning models such as ResNet50, ResNet101, VGG16,
and VGG19 for detecting breast cancer using the 2453 histopathology images
dataset. Images in the dataset were separated into two categories: those with
invasive ductal carcinoma (IDC) and those without IDC. After analyzing the
transfer learning model, we found that ResNet50 outperformed other models,
achieving accuracy rates of 90.2%, Area under Curve (AUC) rates of 90.0%,
recall rates of 94.7%, and a marginal loss of 3.5%.
Related papers
- Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - CEIMVEN: An Approach of Cutting Edge Implementation of Modified Versions of EfficientNet (V1-V2) Architecture for Breast Cancer Detection and Classification from Ultrasound Images [0.0]
Breast cancer remains the major one for being the reason of largest number of demise of women.
In the recent time of research, Medical Image Computing and Processing has been playing a significant role for detecting and classifying breast cancers from ultrasound images and mammograms, along with deep neural networks.
In this research, we focused mostly on our rigorous implementations and iterative result analysis of different cutting-edge modified versions of EfficientNet.
arXiv Detail & Related papers (2023-08-25T13:05:06Z) - LCDctCNN: Lung Cancer Diagnosis of CT scan Images Using CNN Based Model [0.0]
We proposed a deep learning model-based Convolutional Neural Network framework for the early detection of lung cancer using CT scan images.
It achieved an accuracy of 92%, AUC of 98.21%, recall of 91.72%, and loss of 0.328.
arXiv Detail & Related papers (2023-04-10T18:47:20Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Comparison of different CNNs for breast tumor classification from
ultrasound images [12.98780709853981]
classifying benign and malignant tumors from ultrasound (US) imaging is a crucial but challenging task.
We compared different Convolutional Neural Networks (CNNs) and transfer learning methods for the task of automated breast tumor classification.
The best performance was obtained by fine tuning VGG-16, with an accuracy of 0.919 and an AUC of 0.934.
arXiv Detail & Related papers (2020-12-28T22:54:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Diagnosis of Breast Cancer Based on Modern Mammography using Hybrid
Transfer Learning [5.835732870341059]
This paper focuses on transfer learning process to detect breast cancer.
Modified VGG 16, residual network, mobile network is proposed and implemented in this paper.
arXiv Detail & Related papers (2020-03-23T05:16:34Z) - Breast Cancer Detection Using Convolutional Neural Networks [0.0]
Breast cancer is prevalent in Ethiopia that accounts 34% among women cancer patients.
Deep learning techniques are revolutionizing the field of medical image analysis.
Our model detects mass region and classifies them into benign or malignant abnormality in mammogram(MG) images at once.
arXiv Detail & Related papers (2020-03-17T19:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.