Unsupervised learning of spatially varying regularization for diffeomorphic image registration
- URL: http://arxiv.org/abs/2412.17982v1
- Date: Mon, 23 Dec 2024 21:01:32 GMT
- Title: Unsupervised learning of spatially varying regularization for diffeomorphic image registration
- Authors: Junyu Chen, Shuwen Wei, Yihao Liu, Zhangxing Bian, Yufan He, Aaron Carass, Harrison Bai, Yong Du,
- Abstract summary: We propose a hierarchical probabilistic model that integrates a prior distribution on the deformation regularization strength.
The proposed method is straightforward to implement and easily integrates with various registration network architectures.
- Score: 10.748299084301626
- License:
- Abstract: Spatially varying regularization accommodates the deformation variations that may be necessary for different anatomical regions during deformable image registration. Historically, optimization-based registration models have harnessed spatially varying regularization to address anatomical subtleties. However, most modern deep learning-based models tend to gravitate towards spatially invariant regularization, wherein a homogenous regularization strength is applied across the entire image, potentially disregarding localized variations. In this paper, we propose a hierarchical probabilistic model that integrates a prior distribution on the deformation regularization strength, enabling the end-to-end learning of a spatially varying deformation regularizer directly from the data. The proposed method is straightforward to implement and easily integrates with various registration network architectures. Additionally, automatic tuning of hyperparameters is achieved through Bayesian optimization, allowing efficient identification of optimal hyperparameters for any given registration task. Comprehensive evaluations on publicly available datasets demonstrate that the proposed method significantly improves registration performance and enhances the interpretability of deep learning-based registration, all while maintaining smooth deformations.
Related papers
- Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Conditional Deformable Image Registration with Spatially-Variant and
Adaptive Regularization [2.3419031955865517]
We propose a learning-based registration approach based on a novel conditional spatially adaptive instance normalization (CSAIN)
Experiments show that our proposed method outperforms the baseline approaches while achieving spatially-variant and adaptive regularization.
arXiv Detail & Related papers (2023-03-19T16:12:06Z) - Spatially-varying Regularization with Conditional Transformer for
Unsupervised Image Registration [11.498623409184225]
We introduce an end-to-end framework that uses neural networks to learn a deformation regularizer directly from data.
The proposed method is built upon a Transformer-based model, but it can be readily adapted to any network architecture.
arXiv Detail & Related papers (2023-03-10T19:11:16Z) - Reduced Representation of Deformation Fields for Effective Non-rigid
Shape Matching [26.77241999731105]
We present a novel approach for computing correspondences between non-rigid objects by exploiting a reduced representation of deformation fields.
By letting the network learn deformation parameters at a sparse set of positions in space (nodes), we reconstruct the continuous deformation field in a closed-form with guaranteed smoothness.
Our model has high expressive power and is able to capture complex deformations.
arXiv Detail & Related papers (2022-11-26T16:11:17Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
We present a novel approach of diffusion model-based probabilistic image registration, called DiffuseMorph.
Our model learns the score function of the deformation between moving and fixed images.
Our method can provide flexible and accurate deformation with a capability of topology preservation.
arXiv Detail & Related papers (2021-12-09T08:41:23Z) - Conditional Deformable Image Registration with Convolutional Neural
Network [15.83842747998493]
We propose a conditional image registration method and a new self-supervised learning paradigm for deep deformable image registration.
Our proposed method enables the precise control of the smoothness of the deformation field without sacrificing the runtime advantage or registration accuracy.
arXiv Detail & Related papers (2021-06-23T22:25:28Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z) - Efficient Semantic Image Synthesis via Class-Adaptive Normalization [116.63715955932174]
Class-adaptive normalization (CLADE) is a lightweight but equally-effective variant that is only adaptive to semantic class.
We introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE.
The proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE.
arXiv Detail & Related papers (2020-12-08T18:59:32Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.