論文の概要: Online Adaptation for Myographic Control of Natural Dexterous Hand and Finger Movements
- arxiv url: http://arxiv.org/abs/2412.17991v1
- Date: Mon, 23 Dec 2024 21:20:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:17.192456
- Title: Online Adaptation for Myographic Control of Natural Dexterous Hand and Finger Movements
- Title(参考訳): 自然デキスタスハンドと指運動の筋電図制御のためのオンライン適応
- Authors: Joseph L. Betthauser, Rebecca Greene, Ananya Dhawan, John T. Krall, Christopher L. Hunt, Gyorgy Levay, Rahul R. Kaliki, Matthew S. Fifer, Siddhartha Sikdar, Nitish V. Thakor,
- Abstract要約: この研究は、補綴制御システムから得られる信頼性、応答性、運動の複雑さの観点から、筋電図復号における最先端の状態を再定義する。
- 参考スコア(独自算出の注目度): 0.6741087029030101
- License:
- Abstract: One of the most elusive goals in myographic prosthesis control is the ability to reliably decode continuous positions simultaneously across multiple degrees-of-freedom. Goal: To demonstrate dexterous, natural, biomimetic finger and wrist control of the highly advanced robotic Modular Prosthetic Limb. Methods: We combine sequential temporal regression models and reinforcement learning using myographic signals to predict continuous simultaneous predictions of 7 finger and wrist degrees-of-freedom for 9 non-amputee human subjects in a minimally-constrained freeform training process. Results: We demonstrate highly dexterous 7 DoF position-based regression for prosthesis control from EMG signals, with significantly lower error rates than traditional approaches (p < 0.001) and nearly zero prediction response time delay (p < 0.001). Their performance can be continuously improved at any time using our freeform reinforcement process. Significance: We have demonstrated the most dexterous, biomimetic, and natural prosthesis control performance ever obtained from the surface EMG signal. Our reinforcement approach allowed us to abandon standard training protocols and simply allow the subject to move in any desired way while our models adapt. Conclusions: This work redefines the state-of-the-art in myographic decoding in terms of the reliability, responsiveness, and movement complexity available from prosthesis control systems. The present-day emergence and convergence of advanced algorithmic methods, experiment protocols, dexterous robotic prostheses, and sensor modalities represents a unique opportunity to finally realize our ultimate goal of achieving fully restorative natural upper-limb function for amputees.
- Abstract(参考訳): 筋電図の補綴制御における最も明白な目標の1つは、連続的な位置を複数の自由度で同時に復号できる能力である。
目標: 高度に進化したロボット義肢の器用で自然な、生体模倣的な指と手首制御を実証する。
方法: 筋信号を用いた逐次時間回帰モデルと強化学習を組み合わせることで, 極小制約のフリーフォームトレーニングプロセスにおいて, 9人の非切断者に対して, 7本の指と手首の自由度を連続的に予測する。
結果: EMG信号からの補綴制御では, 従来のアプローチ (p < 0.001) とほぼゼロの予測応答時間 (p < 0.001) よりも有意に低い誤差率で, 高精度な7 DoF位置ベース回帰を実証した。
フリーフォーム強化プロセスを使用して, 常に性能を向上することができる。
意義: 表面筋電図信号から得られる, 生体模倣, 天然補綴器の制御性能について検討した。
私たちの強化アプローチは、標準のトレーニングプロトコルを廃止し、モデルが適応している間に、任意の方法で対象を移動させることを可能にしました。
結論: この研究は、補綴制御システムから得られる信頼性、応答性、運動の複雑さの観点から、筋電図復号における最先端の状態を再定義する。
先進的なアルゴリズム手法,実験プロトコル,器用なロボット義肢,センサモダリティの現時点の出現と収束は,アンプの完全な回復的自然上肢機能を達成するという,私たちの究極の目標を実現するためのユニークな機会である。
関連論文リスト
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - A Deep Learning Sequential Decoder for Transient High-Density
Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer
Learning [11.170031300110315]
ハンドジェスチャ認識(HGR)は、AIによる人間コンピュータの利用の増加により注目されている。
これらのインターフェースには、拡張現実の制御、アジャイルの義肢、外骨格など、さまざまなアプリケーションがある。
これらのインターフェースには、拡張現実の制御、アジャイルの義肢、外骨格など、さまざまなアプリケーションがある。
論文 参考訳(メタデータ) (2023-09-23T05:32:33Z) - Data-Driven Goal Recognition in Transhumeral Prostheses Using Process
Mining Techniques [7.95507524742396]
アクティブな義肢は、リアルに評価された連続的なセンサーデータを使用して、患者の標的のポーズや目標を認識し、人工肢を積極的に移動させる。
これまでの研究では、静止ポーズで収集されたデータが、時間ステップを考慮せずに、目標の識別にどの程度役立つかが研究されてきた。
我々のアプローチは、データを離散的なイベントに変換し、既存のプロセスマイニングベースのゴール認識システムを訓練することである。
論文 参考訳(メタデータ) (2023-09-15T02:03:59Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
本研究では,前腕のEMG活性をハンドキネマティクスに連続的にマップする,長期記憶(LSTM)ネットワークに基づく新しい手法を提案する。
私たちの研究は、この困難なデータセットを使用するハンドキネマティクスの予測に関する最初の報告です。
提案手法は, 人工手指の複数のDOFの独立的, 比例的アクティベーションのための制御信号の生成に適していることが示唆された。
論文 参考訳(メタデータ) (2021-04-29T00:11:32Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Towards Creating a Deployable Grasp Type Probability Estimator for a
Prosthetic Hand [11.008123712007402]
InceptionV3は0.95角類似度で最高精度を達成し、1.4 MobileNetV2は0.93で動作量は20%である。
我々の研究は、機械学習とコンピュータビジョンによるEMGインテント推論を物理的状態の確率で拡張することを可能にする。
論文 参考訳(メタデータ) (2021-01-13T21:39:41Z) - Continuous Gesture Recognition from sEMG Sensor Data with Recurrent
Neural Networks and Adversarial Domain Adaptation [1.7205106391379026]
移動手首と非移動手首のジェスチャー認識において経験的な結果を示す。
RNNによる連続ジェスチャー認識にドメイン適応技術を加えることで、被験者間の移動能力が向上することを示した。
論文 参考訳(メタデータ) (2020-12-16T09:24:37Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。