論文の概要: Thermodynamics-informed graph neural networks for real-time simulation of digital human twins
- arxiv url: http://arxiv.org/abs/2412.12034v1
- Date: Mon, 16 Dec 2024 18:01:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:55:49.513766
- Title: Thermodynamics-informed graph neural networks for real-time simulation of digital human twins
- Title(参考訳): 人工双生児のリアルタイムシミュレーションのための熱力学インフォームドグラフニューラルネットワーク
- Authors: Lucas Tesán, David González, Pedro Martins, Elías Cueto,
- Abstract要約: 本稿では,軟組織シミュレーション研究の進展をめざした新しい手法を提案する。
提案手法は, グラフニューラルネットワークの幾何学的バイアスと, 垂直構造の配置から導かれる物理的バイアスを統合する。
そこで本研究では,ヒト肝臓のトラクションおよび圧縮負荷に対する応答を7.3ミリ秒以内で予測するモデルを提案する。
- 参考スコア(独自算出の注目度): 2.6811507121199325
- License:
- Abstract: The growing importance of real-time simulation in the medical field has exposed the limitations and bottlenecks inherent in the digital representation of complex biological systems. This paper presents a novel methodology aimed at advancing current lines of research in soft tissue simulation. The proposed approach introduces a hybrid model that integrates the geometric bias of graph neural networks with the physical bias derived from the imposition of a metriplectic structure as soft and hard constrains in the architecture, being able to simulate hepatic tissue with dissipative properties. This approach provides an efficient solution capable of generating predictions at high feedback rate while maintaining a remarkable generalization ability for previously unseen anatomies. This makes these features particularly relevant in the context of precision medicine and haptic rendering. Based on the adopted methodologies, we propose a model that predicts human liver responses to traction and compression loads in as little as 7.3 milliseconds for optimized configurations and as fast as 1.65 milliseconds in the most efficient cases, all in the forward pass. The model achieves relative position errors below 0.15\%, with stress tensor and velocity estimations maintaining relative errors under 7\%. This demonstrates the robustness of the approach developed, which is capable of handling diverse load states and anatomies effectively. This work highlights the feasibility of integrating real-time simulation with patient-specific geometries through deep learning, paving the way for more robust digital human twins in medical applications.
- Abstract(参考訳): 医療分野におけるリアルタイムシミュレーションの重要性の高まりは、複雑な生物学的システムのデジタル表現に固有の限界とボトルネックを明らかにしている。
本稿では,軟組織シミュレーション研究の進展をめざした新しい手法を提案する。
提案手法は, グラフニューラルネットワークの幾何学的バイアスと, 化学構造体をソフトで硬い制約として配置した物理バイアスとを統合し, 肝組織を散逸特性でシミュレートできるハイブリッドモデルを提案する。
このアプローチは、これまで見られなかった解剖学の顕著な一般化能力を保ちながら、高いフィードバック率で予測を生成することができる効率的なソリューションを提供する。
これらの特徴は、精密医療と触覚レンダリングの文脈において特に関係している。
提案手法は,ヒト肝臓のトラクションおよび圧縮負荷に対する応答を,最適化された構成で7.3ミリ秒,最も効率的な場合で1.65ミリ秒の速さで予測するモデルを提案する。
このモデルでは相対的な位置誤差が0.15\%以下であり、応力テンソルと速度推定は7\%以下である。
これは、様々な負荷状態や解剖を効果的に扱うことができるアプローチの堅牢性を示している。
この研究は、深層学習を通じて患者固有の測地とリアルタイムシミュレーションを統合する可能性を強調し、医療応用におけるより堅牢なデジタルヒト双生児への道を開いた。
関連論文リスト
- Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
計算心血管モデリングは、血流動態を理解する上で重要な役割を担っている。
有限要素法(FEM)に基づく従来の1次元モデルは、3次元平均解に比べて精度が低いことが多い。
本研究では1次元血流モデルの精度を向上させる物理制約付き機械学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T15:22:20Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Physics-informed Neural Network Estimation of Material Properties in Soft Tissue Nonlinear Biomechanical Models [2.8763745263714005]
物理インフォームドニューラルネットワーク(PINN)と3次元軟組織非線形生体力学モデルを組み合わせた新しいアプローチを提案する。
提案した学習アルゴリズムは、限られた量の変位から情報を符号化し、場合によっては、臨床環境で日常的に取得できる歪みデータを符号化する。
提案手法の精度とロバスト性を示すために,いくつかのベンチマークを行った。
論文 参考訳(メタデータ) (2023-12-15T13:41:20Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Learning Reduced-Order Models for Cardiovascular Simulations with Graph
Neural Networks [1.2643625859899612]
三次元血行シミュレーションデータに基づいて学習したグラフニューラルネットワークを用いて,血流動態をシミュレートする1次元還元次モデルを構築した。
提案手法は,物理に基づく一次元モデルよりも優れた性能を示しながら,推論時の高効率性を保っている。
論文 参考訳(メタデータ) (2023-03-13T17:32:46Z) - Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep
Learning Model [0.0]
複雑な合成血管形状の高分解能(空間および時間)速度場を予測できるアーキテクチャを提案する。
CFDシミュレーションと比較して、速度場は平均絶対誤差0.024m/sで推定できるのに対し、実行時間は高性能クラスタでは数時間からコンシューマグラフィカル処理ユニットでは数秒に短縮される。
論文 参考訳(メタデータ) (2023-02-13T17:56:00Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
サンプルコントラストを均質化する新しいモデルベースデータ正規化前処理法を開発した。
上皮扁平上皮細胞およびCaenorhabditis elegans wormsの実験的測定におけるこのフレームワークの能力を示す。
論文 参考訳(メタデータ) (2021-03-29T17:43:56Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。