SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts
- URL: http://arxiv.org/abs/2412.00765v1
- Date: Sun, 01 Dec 2024 10:58:53 GMT
- Title: SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts
- Authors: Aihua Pei, Zehua Yang, Shunan Zhu, Ruoxi Cheng, Ju Jia,
- Abstract summary: This paper introduces a novel framework designed to autonomously evaluate the robustness of large language models (LLMs)<n>Our method generates descriptive sentences from domain-constrained knowledge graph triplets to formulate adversarial prompts.<n>This self-evaluation mechanism allows the LLM to evaluate its robustness without the need for external benchmarks.
- Score: 0.6291443816903801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional methods for evaluating the robustness of large language models (LLMs) often rely on standardized benchmarks, which can escalate costs and limit evaluations across varied domains. This paper introduces a novel framework designed to autonomously evaluate the robustness of LLMs by incorporating refined adversarial prompts and domain-constrained knowledge guidelines in the form of knowledge graphs. Our method systematically generates descriptive sentences from domain-constrained knowledge graph triplets to formulate adversarial prompts, enhancing the relevance and challenge of the evaluation. These prompts, generated by the LLM itself and tailored to evaluate its own robustness, undergo a rigorous filtering and refinement process, ensuring that only those with high textual fluency and semantic fidelity are used. This self-evaluation mechanism allows the LLM to evaluate its robustness without the need for external benchmarks. We assess the effectiveness of our framework through extensive testing on both proprietary models like ChatGPT and open-source models such as Llama-3.1, Phi-3, and Mistral. Results confirm that our approach not only reduces dependency on conventional data but also provides a targeted and efficient means of evaluating LLM robustness in constrained domains.
Related papers
- Revisiting LLM Evaluation through Mechanism Interpretability: a New Metric and Model Utility Law [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.
We propose a novel metric, the Model Utilization Index (MUI), which introduces mechanism interpretability techniques to complement traditional performance metrics.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications [0.0]
Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations.
Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation.
We propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications.
arXiv Detail & Related papers (2025-04-01T09:36:56Z) - MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model [54.14155564592936]
We propose a Mixture of Rule Experts guided by a Large Language Model (MoRE-LLM)
MoRE-LLM steers the discovery of local rule-based surrogates during training and their utilization for the classification task.
LLM is responsible for enhancing the domain knowledge alignment of the rules by correcting and contextualizing them.
arXiv Detail & Related papers (2025-03-26T11:09:21Z) - StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs [78.84060166851805]
StructTest is a novel benchmark that evaluates large language models (LLMs) on their ability to follow compositional instructions and generate structured outputs.
Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets.
We demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o.
arXiv Detail & Related papers (2024-12-23T22:08:40Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
Large Language Models (LLMs) can serve as automatic evaluators for non-standardized metrics in summarization and dialog-based tasks.
We conduct experiments across multiple prompting strategies to examine how LLMs fare as quality evaluators when compared with human judgments.
arXiv Detail & Related papers (2024-12-12T13:31:58Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.
Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.
We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
Large Language Models (LLMs) are capable of generating human-like conversations.
Conventional metrics like BLEU and ROUGE are inadequate for capturing the subtle semantics and contextual richness of such generative outputs.
We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges.
arXiv Detail & Related papers (2024-08-17T16:01:45Z) - KGPA: Robustness Evaluation for Large Language Models via Cross-Domain Knowledge Graphs [5.798411590796167]
This paper proposes a framework that systematically evaluates the robustness of large language models under adversarial attack scenarios.
Our framework generates original prompts from the triplets of knowledge graphs and creates adversarial prompts by poisoning.
Experiments show that adversarial robustness of the ChatGPT family ranks as GPT-4-turbo > GPT-4o > GPT-3.5-turbo, and the robustness of large language models is influenced by the professional domains in which they operate.
arXiv Detail & Related papers (2024-06-16T04:48:43Z) - Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs [1.0878040851638]
This paper surveys evaluation techniques to enhance the trustworthiness and understanding of Large Language Models (LLMs)
Key evaluation metrics include Perplexity Measurement, NLP metrics (BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, Character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, and Fairness and Bias Evaluation.
arXiv Detail & Related papers (2024-06-04T03:54:53Z) - FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models [36.273451767886726]
FreeEval is a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of large language models.
FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies.
The framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules, enhance the fairness of the evaluation outcomes.
arXiv Detail & Related papers (2024-04-09T04:17:51Z) - KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models [53.84677081899392]
KIEval is a Knowledge-grounded Interactive Evaluation framework for large language models.
It incorporates an LLM-powered "interactor" role for the first time to accomplish a dynamic contamination-resilient evaluation.
Extensive experiments on seven leading LLMs across five datasets validate KIEval's effectiveness and generalization.
arXiv Detail & Related papers (2024-02-23T01:30:39Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, prompting a surge in their practical applications.
This paper introduces TrustScore, a framework based on the concept of Behavioral Consistency, which evaluates whether an LLMs response aligns with its intrinsic knowledge.
arXiv Detail & Related papers (2024-02-19T21:12:14Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
This paper describes the DSBA submissions to the Prompting Large Language Models as Explainable Metrics shared task.
Traditional similarity-based metrics such as BLEU and ROUGE have shown to misalign with human evaluation and are ill-suited for open-ended generation tasks.
arXiv Detail & Related papers (2023-11-07T06:36:39Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.