論文の概要: AA-SGAN: Adversarially Augmented Social GAN with Synthetic Data
- arxiv url: http://arxiv.org/abs/2412.18038v1
- Date: Mon, 23 Dec 2024 23:17:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:27.062064
- Title: AA-SGAN: Adversarially Augmented Social GAN with Synthetic Data
- Title(参考訳): AA-SGAN: 合成データを用いた対数拡張ソーシャルGAN
- Authors: Mirko Zaffaroni, Federico Signoretta, Marco Grangetto, Attilio Fiandrotti,
- Abstract要約: 本研究では, 合成軌道を訓練時に, 対角的アプローチで増強する手法を提案する。
本研究は, 実世界の軌道上で, 最先端生成モデルの評価を行うと, 学習時の軌道増進が大きな利益をもたらすことを示す。
- 参考スコア(独自算出の注目度): 9.108224187521287
- License:
- Abstract: Accurately predicting pedestrian trajectories is crucial in applications such as autonomous driving or service robotics, to name a few. Deep generative models achieve top performance in this task, assuming enough labelled trajectories are available for training. To this end, large amounts of synthetically generated, labelled trajectories exist (e.g., generated by video games). However, such trajectories are not meant to represent pedestrian motion realistically and are ineffective at training a predictive model. We propose a method and an architecture to augment synthetic trajectories at training time and with an adversarial approach. We show that trajectory augmentation at training time unleashes significant gains when a state-of-the-art generative model is evaluated over real-world trajectories.
- Abstract(参考訳): 歩行者の軌道を正確に予測することは、自動運転やサービスロボティクスといった応用に欠かせない。
深層生成モデルは、十分なラベル付き軌道がトレーニングに利用できると仮定して、このタスクで最高のパフォーマンスを達成する。
この目的のために、大量の合成されたラベル付き軌道が存在する(例えば、ビデオゲームによって生成される)。
しかし、そのような軌道は歩行者の動きを現実的に表現することを目的としておらず、予測モデルの訓練には効果がない。
本稿では, 合成軌道を学習時に, 対角的アプローチで拡張する手法とアーキテクチャを提案する。
本研究は, 実世界の軌道上で, 最先端生成モデルの評価を行うと, 学習時の軌道増進が大きな利益をもたらすことを示す。
関連論文リスト
- KiGRAS: Kinematic-Driven Generative Model for Realistic Agent Simulation [17.095651262950568]
軌道生成は自動運転における重要な課題である。
最近の研究は自己回帰パラダイムを導入している。
実エージェントシミュレーションのためのキネマティック駆動生成モデルを提案する。
論文 参考訳(メタデータ) (2024-07-17T18:12:11Z) - DICE: Diverse Diffusion Model with Scoring for Trajectory Prediction [7.346307332191997]
本稿では,拡散モデルを用いて将来の軌跡を計算的に効率的に予測するフレームワークを提案する。
提案手法は, 試料軌道数を最大化し, 精度を向上させるための効率的なサンプリング機構である。
本研究では,一般歩行者(UCY/ETH)と自律走行(nuScenes)のベンチマークデータを用いて,経験的評価を行うことによるアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-10-23T05:04:23Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Deep Generative Models for Vehicle Speed Trajectories [2.5137859989323537]
深層生成モデルの拡張によって、正確でスケーラブルな生成が可能になることを示す。
シカゴ大都市圏のGPSデータに基づいて訓練したモデルを用いて,車両軌跡生成に優れた性能を示した。
論文 参考訳(メタデータ) (2021-12-14T20:14:03Z) - Generating Synthetic Training Data for Deep Learning-Based UAV
Trajectory Prediction [11.241614693184323]
本稿では,無人航空機車(UAV)の合成軌道データを生成する手法を提案する。
実世界のUAV追跡データセットにおいて,RNNに基づく予測モデルが従来の参照モデルより優れていることを示す。
論文 参考訳(メタデータ) (2021-07-01T13:08:31Z) - PlayVirtual: Augmenting Cycle-Consistent Virtual Trajectories for
Reinforcement Learning [84.30765628008207]
本稿では,RL特徴表現学習におけるデータ効率を向上させるために,サイクル一貫性のある仮想トラジェクトリを付加するPlayVirtualという新しい手法を提案する。
本手法は,両ベンチマークにおいて,最先端の手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2021-06-08T07:37:37Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Social NCE: Contrastive Learning of Socially-aware Motion
Representations [87.82126838588279]
実験結果から, 提案手法は最近の軌道予測, 行動クローニング, 強化学習アルゴリズムの衝突速度を劇的に低減することがわかった。
本手法は,ニューラルネットワークの設計に関する仮定をほとんど示さないため,神経運動モデルのロバスト性を促進する汎用的手法として使用できる。
論文 参考訳(メタデータ) (2020-12-21T22:25:06Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
歩行者等の軌道予測は,自律型エージェントの性能向上に不可欠である。
本稿では分割結合を利用した新しいハールウェーブレットに基づくブロック自己回帰モデルを提案する。
実世界の2つのデータセット上で、多種多様な正確な軌跡を生成するアプローチの利点について説明する。
論文 参考訳(メタデータ) (2020-09-21T13:57:10Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
人間の動きに関する推論は、安全で社会的に認識されたロボットナビゲーションにとって重要な前提条件である。
我々は,多種多様なエージェントの軌道を予測できるモジュール型グラフ構造化リカレントモデルであるTrajectron++を提案する。
実世界の軌道予測データセットにおいて,その性能を実証する。
論文 参考訳(メタデータ) (2020-01-09T16:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。