論文の概要: Factuality or Fiction? Benchmarking Modern LLMs on Ambiguous QA with Citations
- arxiv url: http://arxiv.org/abs/2412.18051v1
- Date: Mon, 23 Dec 2024 23:55:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:37.430457
- Title: Factuality or Fiction? Benchmarking Modern LLMs on Ambiguous QA with Citations
- Title(参考訳): ファクチュアリティかフィクションか? : サイテーションを伴うあいまいなQAにおける現代のLCMのベンチマーク
- Authors: Maya Patel, Aditi Anand,
- Abstract要約: 質問回答(QA)タスクにおける最先端大言語モデル(LLM)の事実精度と引用性能を評価する。
以上の結果から,より大規模で最近のモデルでは,不明瞭な文脈において,少なくとも1つの正解を常に予測するが,複数の有効な解のケースを処理できないことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Benchmarking modern large language models (LLMs) on complex and realistic tasks is critical to advancing their development. In this work, we evaluate the factual accuracy and citation performance of state-of-the-art LLMs on the task of Question Answering (QA) in ambiguous settings with source citations. Using three recently published datasets-DisentQA-DupliCite, DisentQA-ParaCite, and AmbigQA-Cite-featuring a range of real-world ambiguities, we analyze the performance of two leading LLMs, GPT-4o-mini and Claude-3.5. Our results show that larger, recent models consistently predict at least one correct answer in ambiguous contexts but fail to handle cases with multiple valid answers. Additionally, all models perform equally poorly in citation generation, with citation accuracy consistently at 0. However, introducing conflict-aware prompting leads to large improvements, enabling models to better address multiple valid answers and improve citation accuracy, while maintaining their ability to predict correct answers. These findings highlight the challenges and opportunities in developing LLMs that can handle ambiguity and provide reliable source citations. Our benchmarking study provides critical insights and sets a foundation for future improvements in trustworthy and interpretable QA systems.
- Abstract(参考訳): 複雑で現実的なタスクにおける現代の大規模言語モデル(LLM)のベンチマークは、開発を進める上で重要である。
本研究は,質問応答(QA)タスクにおける現状LPMの実際の精度と引用性能を,ソースの引用とあいまいな設定で評価する。
最近発表された3つのデータセット、DisentQA-DupliCite、DisentQA-ParaCite、AmbigQA-Citeを使って、現実世界の曖昧さを多用し、2つの主要なLCM(GPT-4o-miniとClaude-3.5)のパフォーマンスを分析する。
以上の結果から,より大規模で最近のモデルでは,不明瞭な文脈において,少なくとも1つの正解を常に予測するが,複数の有効な解のケースを処理できないことが示唆された。
さらに、全てのモデルは、引用生成において等しく貧弱であり、引用精度は0。
しかし、コンフリクト対応のプロンプトを導入することで、モデルが複数の有効な回答によりよく対処し、引用精度を向上し、正しい回答を予測する能力を維持しながら、大きな改善がもたらされる。
これらの知見は、曖昧さに対処し、信頼できるソース引用を提供するLLMを開発する上での課題と機会を浮き彫りにしている。
我々のベンチマーク研究は、重要な洞察を与え、信頼性と解釈可能なQAシステムにおける将来の改善の基礎を定めています。
関連論文リスト
- On the Capacity of Citation Generation by Large Language Models [38.47160164251295]
Retrieval-augmented Generation (RAG) は、大規模言語モデル(LLM)における「ハロシン化」問題を緩和するための有望な方法として現れる。
論文 参考訳(メタデータ) (2024-10-15T03:04:26Z) - Adaptive Question Answering: Enhancing Language Model Proficiency for Addressing Knowledge Conflicts with Source Citations [3.3018718917393297]
本稿では,複数の有効な回答が存在するあいまいな環境下で,ソースを引用した質問応答のタスクを提案する。
1)新しい5つのデータセット,(2)実世界の自然発生コンテキストを特徴とする最初のあいまいなマルチホップQAデータセット,(3)モデルの性能を評価するための2つの新しい指標からなる包括的フレームワークを構築した。
この新しいタスク、データセット、メトリクス、ベースラインは、コミュニティにQA研究の境界を押し進め、より信頼できる、解釈可能なシステムを開発するよう促すことを期待しています。
論文 参考訳(メタデータ) (2024-10-05T17:37:01Z) - FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows" [74.7488607599921]
FaithEvalは、コンテキストシナリオにおける大規模言語モデル(LLM)の忠実度を評価するためのベンチマークである。
FaithEvalは4.9Kの高品質な問題で構成され、厳格な4段階のコンテキスト構築と検証フレームワークを通じて検証されている。
論文 参考訳(メタデータ) (2024-09-30T06:27:53Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - One Thousand and One Pairs: A "novel" challenge for long-context language models [56.60667988954638]
NoChaは、67冊の架空の書籍に関する1,001対の真偽の主張のデータセットである。
当社のアノテータは、NoChaにおけるペアの最大シェアは、本全体に対するグローバルな推論を必要としていることを確認しています。
平均的なモデルでは、文レベルの検索しか必要としないペアの方が、グローバルな推論よりもはるかに優れています。
論文 参考訳(メタデータ) (2024-06-24T02:03:57Z) - Learning to Generate Answers with Citations via Factual Consistency Models [28.716998866121923]
大型言語モデル(LLM)は、ミッションクリティカルな状況においてその信頼性を阻害する。
本稿では,事実整合性モデル(FCM)を利用した弱教師付き微調整法を提案する。
集中学習は目的に統合され、ファインチューニングプロセスが現実の単位トークンを強調するように指示される。
論文 参考訳(メタデータ) (2024-06-19T00:40:19Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - GRATH: Gradual Self-Truthifying for Large Language Models [63.502835648056305]
GRATH(Gradual Self-Truthifying)は,大規模言語モデル(LLM)の真偽性を高めるためのポストプロセッシング手法である。
GRATHは、反復的に真理データを洗練し、モデルを更新する。
GRATHはTruthfulQAの最先端性能を達成し、MC1の精度は54.71%、MC2の精度は69.10%であり、70B-LLMよりも高い。
論文 参考訳(メタデータ) (2024-01-22T19:00:08Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - Towards Reliable and Fluent Large Language Models: Incorporating
Feedback Learning Loops in QA Systems [10.58737969057445]
我々は,大規模な言語モデルによって生成された応答の引用,正しさ,および流布性を評価することができる評論家モデルを訓練するためのデータセットを構築した。
本稿では,批判モデルを利用して生成したテキストの異質な側面をリアルタイムにフィードバックする自動フィードバック機構を提案する。
提案手法の有効性を実験的に検証し,4%の精度向上とMAUVE測定値の約8%の精度向上を図った。
論文 参考訳(メタデータ) (2023-09-08T09:39:53Z) - Enabling Large Language Models to Generate Text with Citations [37.64884969997378]
大規模言語モデル (LLM) は情報検索のツールとして広く使われている。
我々の目的は、LLMが引用文を生成できるようにし、その事実の正しさと妥当性を向上させることである。
自動LLMのCitation Evaluationのための最初のベンチマークであるALCEを提案する。
論文 参考訳(メタデータ) (2023-05-24T01:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。