COMO: Cross-Mamba Interaction and Offset-Guided Fusion for Multimodal Object Detection
- URL: http://arxiv.org/abs/2412.18076v1
- Date: Tue, 24 Dec 2024 01:14:48 GMT
- Title: COMO: Cross-Mamba Interaction and Offset-Guided Fusion for Multimodal Object Detection
- Authors: Chang Liu, Xin Ma, Xiaochen Yang, Yuxiang Zhang, Yanni Dong,
- Abstract summary: Single-modal object detection tasks often experience performance degradation when encountering diverse scenarios.
multimodal object detection tasks can offer more comprehensive information about object features by integrating data from various modalities.
In this paper, we propose a novel approach called the CrOss-Mamba interaction and Offset-guided fusion framework.
- Score: 9.913133285133998
- License:
- Abstract: Single-modal object detection tasks often experience performance degradation when encountering diverse scenarios. In contrast, multimodal object detection tasks can offer more comprehensive information about object features by integrating data from various modalities. Current multimodal object detection methods generally use various fusion techniques, including conventional neural networks and transformer-based models, to implement feature fusion strategies and achieve complementary information. However, since multimodal images are captured by different sensors, there are often misalignments between them, making direct matching challenging. This misalignment hinders the ability to establish strong correlations for the same object across different modalities. In this paper, we propose a novel approach called the CrOss-Mamba interaction and Offset-guided fusion (COMO) framework for multimodal object detection tasks. The COMO framework employs the cross-mamba technique to formulate feature interaction equations, enabling multimodal serialized state computation. This results in interactive fusion outputs while reducing computational overhead and improving efficiency. Additionally, COMO leverages high-level features, which are less affected by misalignment, to facilitate interaction and transfer complementary information between modalities, addressing the positional offset challenges caused by variations in camera angles and capture times. Furthermore, COMO incorporates a global and local scanning mechanism in the cross-mamba module to capture features with local correlation, particularly in remote sensing images. To preserve low-level features, the offset-guided fusion mechanism ensures effective multiscale feature utilization, allowing the construction of a multiscale fusion data cube that enhances detection performance.
Related papers
- SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.
It is designed to accurately detect horizontal or oriented objects from any sensor modality.
This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - SeaDATE: Remedy Dual-Attention Transformer with Semantic Alignment via Contrast Learning for Multimodal Object Detection [18.090706979440334]
Multimodal object detection leverages diverse modal information to enhance the accuracy and robustness of detectors.
Current methods merely stack Transformer-guided fusion techniques without exploring their capability to extract features at various depth layers of network.
In this paper, we introduce an accurate and efficient object detection method named SeaDATE.
arXiv Detail & Related papers (2024-10-15T07:26:39Z) - Interactive Masked Image Modeling for Multimodal Object Detection in Remote Sensing [2.0528748158119434]
multimodal learning can be used to integrate features from different data modalities, thereby improving detection accuracy.
In this paper, we propose to use Masked Image Modeling (MIM) as a pre-training technique, leveraging self-supervised learning on unlabeled data.
To address this, we propose a new interactive MIM method that can establish interactions between different tokens, which is particularly beneficial for object detection in remote sensing.
arXiv Detail & Related papers (2024-09-13T14:50:50Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
We introduce a text-guided multi-modality image fusion method that leverages the high-level semantics from textual descriptions to integrate semantics from infrared and visible images.
Our method not only produces visually superior fusion results but also achieves a higher detection mAP over existing methods, achieving state-of-the-art results.
arXiv Detail & Related papers (2023-12-31T08:13:47Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
Multi-modal fusion has been determined to enhance the accuracy by fusing data from multiple modalities.
We propose a novel multi-modal fusion strategy for mapping relationships between different channels at the early stage.
By addressing fusion in the early stage, as opposed to mid or late-stage methods, our method achieves competitive and even superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-10-21T00:56:11Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - ICAFusion: Iterative Cross-Attention Guided Feature Fusion for
Multispectral Object Detection [25.66305300362193]
A novel feature fusion framework of dual cross-attention transformers is proposed to model global feature interaction.
This framework enhances the discriminability of object features through the query-guided cross-attention mechanism.
The proposed method achieves superior performance and faster inference, making it suitable for various practical scenarios.
arXiv Detail & Related papers (2023-08-15T00:02:10Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Cross-Modality Fusion Transformer for Multispectral Object Detection [0.0]
Multispectral image pairs can provide the combined information, making object detection applications more reliable and robust.
We present a simple yet effective cross-modality feature fusion approach, named Cross-Modality Fusion Transformer (CFT) in this paper.
arXiv Detail & Related papers (2021-10-30T15:34:12Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.