Generating Traffic Scenarios via In-Context Learning to Learn Better Motion Planner
- URL: http://arxiv.org/abs/2412.18086v1
- Date: Tue, 24 Dec 2024 01:52:19 GMT
- Title: Generating Traffic Scenarios via In-Context Learning to Learn Better Motion Planner
- Authors: Aizierjiang Aiersilan,
- Abstract summary: State-of-the-art motion planners are trained on meticulously curated datasets.
Failing to account for such scenarios poses a significant risk to motion planners and may lead to incidents during testing.
We propose an inexpensive method for generating diverse critical traffic scenarios to train more robust motion planners.
- Score: 0.0
- License:
- Abstract: Motion planning is a crucial component in autonomous driving. State-of-the-art motion planners are trained on meticulously curated datasets, which are not only expensive to annotate but also insufficient in capturing rarely seen critical scenarios. Failing to account for such scenarios poses a significant risk to motion planners and may lead to incidents during testing. An intuitive solution is to manually compose such scenarios by programming and executing a simulator (e.g., CARLA). However, this approach incurs substantial human costs. Motivated by this, we propose an inexpensive method for generating diverse critical traffic scenarios to train more robust motion planners. First, we represent traffic scenarios as scripts, which are then used by the simulator to generate traffic scenarios. Next, we develop a method that accepts user-specified text descriptions, which a Large Language Model (LLM) translates into scripts using in-context learning. The output scripts are sent to the simulator that produces the corresponding traffic scenarios. As our method can generate abundant safety-critical traffic scenarios, we use them as synthetic training data for motion planners. To demonstrate the value of generated scenarios, we train existing motion planners on our synthetic data, real-world datasets, and a combination of both. Our experiments show that motion planners trained with our data significantly outperform those trained solely on real-world data, showing the usefulness of our synthetic data and the effectiveness of our data generation method. Our source code is available at https://ezharjan.github.io/AutoSceneGen.
Related papers
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - Solving Motion Planning Tasks with a Scalable Generative Model [15.858076912795621]
We present an efficient solution based on generative models which learns the dynamics of the driving scenes.
Our innovative design allows the model to operate in both full-Autoregressive and partial-Autoregressive modes.
We conclude that the proposed generative model may serve as a foundation for a variety of motion planning tasks.
arXiv Detail & Related papers (2024-07-03T03:57:05Z) - Towards learning-based planning:The nuPlan benchmark for real-world
autonomous driving [2.6855803445552233]
nuPlan is the world's first real-world autonomous driving dataset and benchmark.
The benchmark is designed to test the ability of ML-based planners to handle diverse driving situations.
We present a detailed analysis of numerous baselines and investigate gaps between ML-based and traditional methods.
arXiv Detail & Related papers (2024-03-07T01:24:59Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Learning to Simulate on Sparse Trajectory Data [26.718807213824853]
We present a novel framework ImInGAIL to address the problem of learning to simulate the driving behavior from sparse real-world data.
To the best of our knowledge, we are the first to tackle the data sparsity issue for behavior learning problems.
arXiv Detail & Related papers (2021-03-22T13:42:11Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.