論文の概要: Spectrum-oriented Point-supervised Saliency Detector for Hyperspectral Images
- arxiv url: http://arxiv.org/abs/2412.18112v1
- Date: Tue, 24 Dec 2024 02:52:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:07.335113
- Title: Spectrum-oriented Point-supervised Saliency Detector for Hyperspectral Images
- Title(参考訳): ハイパースペクトル画像のためのスペクトル指向型点監督型サリエンシ検出器
- Authors: Peifu Liu, Tingfa Xu, Guokai Shi, Jingxuan Xu, Huan Chen, Jianan Li,
- Abstract要約: ハイパースペクトル・サリエント物体検出(HSOD)における点監督について紹介する。
本稿では,従来のHSOD法から派生したスペクトル・サリエンシを,そのフレームワーク内で重要なスペクトル表現として組み込む。
本稿では,HSIに特化して設計された新しいパイプラインを提案し,点監督戦略に関連した性能低下を効果的に軽減する。
- 参考スコア(独自算出の注目度): 13.79887292039637
- License:
- Abstract: Hyperspectral salient object detection (HSOD) aims to extract targets or regions with significantly different spectra from hyperspectral images. While existing deep learning-based methods can achieve good detection results, they generally necessitate pixel-level annotations, which are notably challenging to acquire for hyperspectral images. To address this issue, we introduce point supervision into HSOD, and incorporate Spectral Saliency, derived from conventional HSOD methods, as a pivotal spectral representation within the framework. This integration leads to the development of a novel Spectrum-oriented Point-supervised Saliency Detector (SPSD). Specifically, we propose a novel pipeline, specifically designed for HSIs, to generate pseudo-labels, effectively mitigating the performance decline associated with point supervision strategy. Additionally, Spectral Saliency is employed to counteract information loss during model supervision and saliency refinement, thereby maintaining the structural integrity and edge accuracy of the detected objects. Furthermore, we introduce a Spectrum-transformed Spatial Gate to focus more precisely on salient regions while reducing feature redundancy. We have carried out comprehensive experiments on both HSOD-BIT and HS-SOD datasets to validate the efficacy of our proposed method, using mean absolute error (MAE), E-measure, F-measure, Area Under Curve, and Cross Correlation as evaluation metrics. For instance, on the HSOD-BIT dataset, our SPSD achieves a MAE of 0.031 and an F-measure of 0.878. Thorough ablation studies have substantiated the effectiveness of each individual module and provided insights into the model's working mechanism. Further evaluations on RGB-thermal salient object detection datasets highlight the versatility of our approach.
- Abstract(参考訳): ハイパースペクトル塩物検出(HSOD)は、ハイパースペクトル画像からかなり異なるスペクトルを持つターゲットまたは領域を抽出することを目的としている。
既存のディープラーニングベースの手法は優れた検出結果が得られるが、一般的にはピクセルレベルのアノテーションを必要とする。
この問題に対処するために,従来のHSOD法から派生したスペクトル・サリエンシ(Spectral Saliency)を,そのフレームワーク内で重要なスペクトル表現として導入する。
この統合により、新しいスペクトラム指向のポイント教師付きサリエンシ検出器(SPSD)が開発される。
具体的には,HSIに特化して設計された新しいパイプラインを提案し,点監督戦略に関連した性能低下を効果的に軽減する。
さらに、モデル監督と唾液度改善の間に情報損失を防止し、検出対象の構造的整合性とエッジ精度を維持するために分光塩分率を用いる。
さらに、スペクトル変換された空間ゲートを導入し、特徴冗長性を低減しつつ、より正確に有能な領域に焦点を当てる。
我々は,平均絶対誤差(MAE),E測定,F測定,エリアアンダーカーブ,クロス相関を評価指標として,HSOD-BITおよびHS-SODデータセットの総合的な実験を行い,提案手法の有効性を検証した。
例えば、HSOD-BITデータセットでは、SPSDは0.031のMAEと0.878のF測定を達成しています。
徹底的なアブレーション研究により、各モジュールの有効性が実証され、モデルの動作メカニズムに関する洞察が得られた。
RGB熱水性物質検出データセットのさらなる評価は、我々のアプローチの汎用性を強調している。
関連論文リスト
- Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
RGBおよびTIR(熱赤外)変調を利用したマルチスペクトル物体検出は,課題として広く認識されている。
モダリティと堅牢な融合戦略の両方から特徴を効果的に抽出するだけでなく、スペクトルの相違といった問題に対処する能力も必要である。
本稿では,高パフォーマンス単一モードモデルのシームレスな最適化が可能な,効率的かつ容易にデプロイ可能なマルチスペクトルオブジェクト検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-27T12:18:39Z) - HTD-Mamba: Efficient Hyperspectral Target Detection with Pyramid State Space Model [5.505983410956103]
ハイパースペクトルターゲット検出(HTD)は、ピクセルレベルの複雑な背景から興味のある対象を特定する。
本稿では, HTD-Mamba というピラミッド状態空間モデル (SSM) を用いた効率的な自己教師型 HTD 手法を提案する。
4つの公開データセットで行った実験により,提案手法は定量評価と定性評価の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-07-09T13:21:26Z) - SSF-Net: Spatial-Spectral Fusion Network with Spectral Angle Awareness
for Hyperspectral Object Tracking [21.664141982246598]
ハイパースペクトルビデオ(HSV)は、空間的、スペクトル的、時間的情報を同時に提供する。
既存の手法は主にバンド再編成に重点を置いており、特徴抽出のためにRGBトラッカーに依存している。
本稿では、超スペクトル(HS)物体追跡において、スペクトル角認識(SST-Net)を用いた空間-スペクトル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-03-09T09:37:13Z) - Exploring Hyperspectral Anomaly Detection with Human Vision: A Small
Target Aware Detector [20.845503528474328]
ハイパースペクトル異常検出(HAD)は、背景と異なるスペクトル特徴を持つ画素点の局在化を目的としている。
既存のHAD法は、背景スペクトルと異常スペクトルを客観的に検出し、識別することを目的としている。
本稿では,人間の視覚知覚下でのハイパースペクトル画像(HSI)の特徴を解析する。
本研究では,人間の視覚的知覚に近づいたHSI特徴を捉えるために,サリエンシマップを導入した小型目標認識検出器(STAD)を提案する。
論文 参考訳(メタデータ) (2024-01-02T08:28:38Z) - Hyperspectral Image Reconstruction via Combinatorial Embedding of
Cross-Channel Spatio-Spectral Clues [6.580484964018551]
既存の学習に基づくハイパースペクトル再構成手法は、ハイパースペクトルバンド間の情報を完全に活用する際の限界を示す。
それぞれの超スペクトル空間における相互依存性について検討する。
これらの組み込み機能は、チャネル間相関をクエリすることで、完全に活用することができる。
論文 参考訳(メタデータ) (2023-12-18T11:37:19Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
S2ADetは、高スペクトル画像に固有の豊富なスペクトル情報と空間補完情報を利用する物体検出器である。
S2ADetは既存の最先端メソッドを超え、堅牢で信頼性の高い結果を達成する。
論文 参考訳(メタデータ) (2023-06-14T09:01:50Z) - Hyperspectral Images Classification and Dimensionality Reduction using
spectral interaction and SVM classifier [0.0]
ハイパースペクトル画像(HSI)の高次元性は、収集したデータを分析する上で大きな課題の1つである。
ノイズ、冗長、無関係なバンドの存在は、計算複雑性を増大させる。
本稿では,スペクトル相互作用尺度に基づく新しいフィルタ手法と,次元減少のための支持ベクトルマシンを提案する。
論文 参考訳(メタデータ) (2022-10-27T15:37:57Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。