論文の概要: Quantum framework for Reinforcement Learning: integrating Markov Decision Process, quantum arithmetic, and trajectory search
- arxiv url: http://arxiv.org/abs/2412.18208v1
- Date: Tue, 24 Dec 2024 06:28:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:01.415827
- Title: Quantum framework for Reinforcement Learning: integrating Markov Decision Process, quantum arithmetic, and trajectory search
- Title(参考訳): 強化学習のための量子フレームワーク:マルコフ決定過程、量子算術、軌道探索の統合
- Authors: Thet Htar Su, Shaswot Shresthamali, Masaaki Kondo,
- Abstract要約: 本稿では、強化学習(RL)タスクに対処する量子フレームワークを提案する。
量子の概念と量子探索アルゴリズムを用いることで、この研究は量子領域内でのエージェント-環境相互作用の実装と最適化を示す。
- 参考スコア(独自算出の注目度): 0.6062751776009752
- License:
- Abstract: This paper introduces a quantum framework for addressing reinforcement learning (RL) tasks, grounded in the quantum principles and leveraging a fully quantum model of the classical Markov Decision Process (MDP). By employing quantum concepts and a quantum search algorithm, this work presents the implementation and optimization of the agent-environment interactions entirely within the quantum domain, eliminating reliance on classical computations. Key contributions include the quantum-based state transitions, return calculation, and trajectory search mechanism that utilize quantum principles to demonstrate the realization of RL processes through quantum phenomena. The implementation emphasizes the fundamental role of quantum superposition in enhancing computational efficiency for RL tasks. Experimental results demonstrate the capacity of a quantum model to achieve quantum advantage in RL, highlighting the potential of fully quantum implementations in decision-making tasks. This work not only underscores the applicability of quantum computing in machine learning but also contributes the field of quantum reinforcement learning (QRL) by offering a robust framework for understanding and exploiting quantum computing in RL systems.
- Abstract(参考訳): 本稿では,古典マルコフ決定過程(MDP)の量子モデルを活用し,量子原理に基づく強化学習(RL)タスクに対処する量子フレームワークを提案する。
量子の概念と量子探索アルゴリズムを用いることで、量子領域内でのエージェント-環境相互作用の実装と最適化を行い、古典的な計算への依存をなくす。
主な貢献は、量子ベースの状態遷移、戻り値計算、量子原理を利用して量子現象によるRLプロセスの実現を実証する軌道探索機構である。
この実装は、RLタスクの計算効率の向上における量子重ね合わせの基本的な役割を強調している。
実験により、RLにおける量子優位性を達成する量子モデルの能力を示し、意思決定タスクにおける完全な量子実装の可能性を強調した。
この研究は、機械学習における量子コンピューティングの適用性だけでなく、RLシステムにおける量子コンピューティングの理解と活用のための堅牢なフレームワークを提供することによって、量子強化学習(QRL)の分野にも貢献している。
関連論文リスト
- Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
オープン量子系の基本理論の簡潔な要約を提供する。
次に、最近の量子アルゴリズムに関する議論を掘り下げる。
我々は,本分野の現実的な化学,生物,物質システムへの適用性を実証し,関連する応用の議論を締めくくった。
論文 参考訳(メタデータ) (2024-06-07T19:02:22Z) - A quantum information theoretic analysis of reinforcement learning-assisted quantum architecture search [0.0]
本研究では,変分量子状態対角化問題に適したアンサッツ製造のためのRL-QASについて検討した。
我々はこれらの知見を活用して、最適な資源を用いてランダムな量子状態と対角化するために、QASの絡み合った許容アンサッツを考案する。
論文 参考訳(メタデータ) (2024-04-09T09:54:59Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Learning Quantum Processes with Quantum Statistical Queries [0.0]
本稿では,量子統計クエリモデル内で量子プロセス学習を研究するための最初の学習フレームワークを紹介する。
保証可能な性能保証を伴う任意の量子プロセスに対する効率的なQPSQ学習者を提案する。
この研究は、量子プロセスの学習可能性を理解するための重要なステップであり、セキュリティへの影響に光を当てている。
論文 参考訳(メタデータ) (2023-10-03T14:15:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
量子コンピューティングのノイズ中間スケール量子(NISQ)時代には、量子資源は限られている。
ボゾン基底と励起状態計算のための資源効率のよい量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-23T19:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。