論文の概要: Learning Quantum Processes with Quantum Statistical Queries
- arxiv url: http://arxiv.org/abs/2310.02075v3
- Date: Mon, 29 Apr 2024 15:51:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:54:37.951691
- Title: Learning Quantum Processes with Quantum Statistical Queries
- Title(参考訳): 量子統計的クエリによる量子プロセスの学習
- Authors: Chirag Wadhwa, Mina Doosti,
- Abstract要約: 本稿では,量子統計クエリモデル内で量子プロセス学習を研究するための最初の学習フレームワークを紹介する。
保証可能な性能保証を伴う任意の量子プロセスに対する効率的なQPSQ学習者を提案する。
この研究は、量子プロセスの学習可能性を理解するための重要なステップであり、セキュリティへの影響に光を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning complex quantum processes is a central challenge in many areas of quantum computing and quantum machine learning, with applications in quantum benchmarking, cryptanalysis, and variational quantum algorithms. This paper introduces the first learning framework for studying quantum process learning within the Quantum Statistical Query (QSQ) model, providing the first formal definition of statistical queries to quantum processes (QPSQs). The framework allows us to propose an efficient QPSQ learner for arbitrary quantum processes accompanied by a provable performance guarantee. We also provide numerical simulations to demonstrate the efficacy of this algorithm. In our new framework, we prove exponential query complexity lower bounds for learning unitary 2-designs, and a doubly exponential lower bound for learning haar-random unitaries. The practical relevance of this framework is exemplified through application in cryptography, highlighting vulnerabilities of a large class of Classical-Readout Quantum Physical Unclonable Functions (CR-QPUFs), addressing an important open question in the field of quantum hardware security. This work marks a significant step towards understanding the learnability of quantum processes and shedding light on their security implications.
- Abstract(参考訳): 複雑な量子プロセスの学習は、量子コンピューティングと量子機械学習の多くの領域において中心的な課題であり、量子ベンチマーク、暗号解析、変分量子アルゴリズムに応用されている。
本稿では,量子統計クエリ(QSQ)モデル内で量子プロセス学習を研究するための最初の学習フレームワークを紹介し,量子プロセス(QPSQ)に対する統計クエリの最初の公式定義を提供する。
このフレームワークにより、任意の量子プロセスに対して、証明可能な性能保証を伴う効率的なQPSQ学習者を提案することができる。
また,本アルゴリズムの有効性を示す数値シミュレーションも提供する。
新たなフレームワークでは,一意的な2つの設計を学習するための指数的クエリ複雑性の低い境界,一意なユニタリーを学習するための2つの指数的低境界を証明した。
このフレームワークの実践的関連性は、暗号の応用を通じて実証されており、量子ハードウェアセキュリティの分野において重要な問題に対処する、古典的可読量子物理不閉関数(CR-QPUF)の大規模クラスの脆弱性を強調している。
この研究は、量子プロセスの学習可能性を理解するための重要なステップであり、セキュリティへの影響に光を当てている。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
オープン量子系の基本理論の簡潔な要約を提供する。
次に、最近の量子アルゴリズムに関する議論を掘り下げる。
我々は,本分野の現実的な化学,生物,物質システムへの適用性を実証し,関連する応用の議論を締めくくった。
論文 参考訳(メタデータ) (2024-06-07T19:02:22Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
本稿では,量子機械学習の初期段階である量子視覚符号化戦略を再考する。
根本原因を調べた結果,既存の量子符号化設計では符号化処理後の視覚的特徴の情報保存が不十分であることが判明した。
我々は、このギャップを最小限に抑えるために、量子情報保存と呼ばれる新しい損失関数を導入し、量子機械学習アルゴリズムの性能を向上した。
論文 参考訳(メタデータ) (2024-05-30T06:15:08Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
不規則性(Unclonability)は、量子理論の基本概念であり、量子情報の主要な非古典的性質の1つである。
我々は、量子世界、すなわち量子物理学的不閉性(quantum physical unclonability)という新しい非閉性の概念を導入する。
本稿では、暗号資源として、この新しいタイプの無拘束性(unclonability)のいくつかの応用について論じ、確実に安全な量子プロトコルを設計する。
論文 参考訳(メタデータ) (2022-10-31T17:57:09Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
NISQコンピュータに適した3つの量子機械学習アプリケーションを開発し研究する。
これらのアルゴリズムは本質的に変動し、基礎となる量子機械学習モデルとしてパラメータ化量子回路(PQC)を使用する。
近似量子クローニングの領域において,データを自然界において量子化する変分アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-19T09:26:57Z) - Quantum Phase Recognition via Quantum Kernel Methods [6.3286116342955845]
本稿では,量子位相認識問題における量子学習アルゴリズムのパワーについて考察する。
我々は, 対称性保護位相と対称性破壊位相の認識を含む, 様々な問題に対して, アルゴリズムを数値的にベンチマークする。
本結果は,多粒子系における量子位相遷移の予測における量子機械学習の能力を強調した。
論文 参考訳(メタデータ) (2021-11-15T06:17:52Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。