論文の概要: Schödinger Bridge Type Diffusion Models as an Extension of Variational Autoencoders
- arxiv url: http://arxiv.org/abs/2412.18237v1
- Date: Tue, 24 Dec 2024 07:43:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:30.933002
- Title: Schödinger Bridge Type Diffusion Models as an Extension of Variational Autoencoders
- Title(参考訳): 変分オートエンコーダの拡張としてのシェーディンガーブリッジ型拡散モデル
- Authors: Kentaro Kaba, Reo Shimizu, Masayuki Ohzeki, Yuki Sughiyama,
- Abstract要約: 本稿では,SB型モデルを変分オートエンコーダの拡張として再解釈することにより,拡散モデルを構築するための統一的なフレームワークを提案する。
対象関数は, 先行損失とドリフト整合部からなる。
- 参考スコア(独自算出の注目度): 0.4499833362998489
- License:
- Abstract: Generative diffusion models use time-forward and backward stochastic differential equations to connect the data and prior distributions. While conventional diffusion models (e.g., score-based models) only learn the backward process, more flexible frameworks have been proposed to also learn the forward process by employing the Schr\"odinger bridge (SB). However, due to the complexity of the mathematical structure behind SB-type models, we can not easily give an intuitive understanding of their objective function. In this work, we propose a unified framework to construct diffusion models by reinterpreting the SB-type models as an extension of variational autoencoders. In this context, the data processing inequality plays a crucial role. As a result, we find that the objective function consists of the prior loss and drift matching parts.
- Abstract(参考訳): 生成拡散モデルでは、時間-前方および後方確率微分方程式を用いてデータと先行分布を接続する。
従来の拡散モデル(例えばスコアベースモデル)は後進過程のみを学習するが、より柔軟なフレームワークはSchr\"odinger Bridge (SB)を用いて前進過程も学習する。
しかし、SB型モデルの背後にある数学的構造が複雑であるため、それらの目的関数を直観的に理解することは容易ではない。
本研究では,SB型モデルを変分オートエンコーダの拡張として再解釈することにより,拡散モデルを構築するための統一的なフレームワークを提案する。
この文脈では、データ処理の不平等が重要な役割を果たす。
その結果, 対象関数は, 先行損失とドリフト整合部からなることがわかった。
関連論文リスト
- Continuous Diffusion Model for Language Modeling [57.396578974401734]
離散データに対する既存の連続拡散モデルは、離散的アプローチと比較して性能が限られている。
本稿では,下層の分類分布の幾何学を組み込んだ言語モデリングのための連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-17T08:54:29Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
これらの課題に対処するための影響関数フレームワークを開発する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
反応流モデルにおける不確実性を捉えるためにベイズニューラルネットワークを用いる。
我々は、BNNモデルが、データ駆動クロージャモデルの不確実性の構造に関するユニークな洞察を提供することができることを示した。
このモデルの有効性は,様々な火炎条件と燃料からなるデータセットに対する事前評価によって実証される。
論文 参考訳(メタデータ) (2024-02-28T22:19:55Z) - Improving Generative Model-based Unfolding with Schr\"{o}dinger Bridges [14.989614554242229]
機械学習に基づく展開により、未結合かつ高次元の断面積測定が可能になった。
我々はシュレーディンガーブリッジと拡散モデルを用いてSBUnfoldを作成することを提案する。
SBUnfoldは,合成Z+jetsデータセット上でのアート手法の状態と比較して,優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-08-23T18:01:01Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。