RaCMC: Residual-Aware Compensation Network with Multi-Granularity Constraints for Fake News Detection
- URL: http://arxiv.org/abs/2412.18254v1
- Date: Tue, 24 Dec 2024 08:08:29 GMT
- Title: RaCMC: Residual-Aware Compensation Network with Multi-Granularity Constraints for Fake News Detection
- Authors: Xinquan Yu, Ziqi Sheng, Wei Lu, Xiangyang Luo, Jiantao Zhou,
- Abstract summary: Multimodal fake news detection aims to automatically identify real or fake news, thereby mitigating the adverse effects caused by such misinformation.
We present a residual-aware compensation network with multi-granularity constraints for fake news detection, that aims to sufficiently interact and fuse cross-modal features.
Experiments on three public datasets, including Weibo17, Politifact and GossipCop, reveal the superiority of the proposed method.
- Score: 24.91068046428761
- License:
- Abstract: Multimodal fake news detection aims to automatically identify real or fake news, thereby mitigating the adverse effects caused by such misinformation. Although prevailing approaches have demonstrated their effectiveness, challenges persist in cross-modal feature fusion and refinement for classification. To address this, we present a residual-aware compensation network with multi-granularity constraints (RaCMC) for fake news detection, that aims to sufficiently interact and fuse cross-modal features while amplifying the differences between real and fake news. First, a multiscale residual-aware compensation module is designed to interact and fuse features at different scales, and ensure both the consistency and exclusivity of feature interaction, thus acquiring high-quality features. Second, a multi-granularity constraints module is implemented to limit the distribution of both the news overall and the image-text pairs within the news, thus amplifying the differences between real and fake news at the news and feature levels. Finally, a dominant feature fusion reasoning module is developed to comprehensively evaluate news authenticity from the perspectives of both consistency and inconsistency. Experiments on three public datasets, including Weibo17, Politifact and GossipCop, reveal the superiority of the proposed method.
Related papers
- Multimodal Inverse Attention Network with Intrinsic Discriminant Feature Exploitation for Fake News Detection [15.472199961982271]
Multimodal fake news detection has garnered significant attention due to its profound implications for social security.
We propose a novel framework that explores intrinsic discriminative features based on news content to advance fake news detection.
arXiv Detail & Related papers (2025-02-03T07:58:22Z) - Modality Interactive Mixture-of-Experts for Fake News Detection [13.508494216511094]
We present Modality Interactive Mixture-of-Experts for Fake News Detection (MIMoE-FND)
MIMoE-FND is a novel hierarchical Mixture-of-Experts framework designed to enhance multimodal fake news detection.
We evaluate our approach on three real-world benchmarks spanning two languages, demonstrating its superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2025-01-21T16:49:00Z) - Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection [50.079690200471454]
Few-Shot Fake News Detection (FS-FND) aims to distinguish inaccurate news from real ones in extremely low-resource scenarios.
This task has garnered increased attention due to the widespread dissemination and harmful impact of fake news on social media.
We propose a Dual-perspective Knowledge-guided Fake News Detection (DKFND) model, designed to enhance LLMs from both inside and outside perspectives.
arXiv Detail & Related papers (2024-07-12T03:15:01Z) - Retain, Blend, and Exchange: A Quality-aware Spatial-Stereo Fusion Approach for Event Stream Recognition [57.74076383449153]
We propose a novel dual-stream framework for event stream-based pattern recognition via differentiated fusion, termed EFV++.
It models two common event representations simultaneously, i.e., event images and event voxels.
We achieve new state-of-the-art performance on the Bullying10k dataset, i.e., $90.51%$, which exceeds the second place by $+2.21%$.
arXiv Detail & Related papers (2024-06-27T02:32:46Z) - Inconsistent Matters: A Knowledge-guided Dual-consistency Network for
Multi-modal Rumor Detection [53.48346699224921]
A novel Knowledge-guided Dualconsistency Network is proposed to detect rumors with multimedia contents.
It uses two consistency detectionworks to capture the inconsistency at the cross-modal level and the content-knowledge level simultaneously.
It also enables robust multi-modal representation learning under different missing visual modality conditions.
arXiv Detail & Related papers (2023-06-03T15:32:20Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
We present a Multi-grained Multi-modal Fusion Network (MMFN) for fake news detection.
Inspired by the multi-grained process of human assessment of news authenticity, we respectively employ two Transformer-based pre-trained models to encode token-level features from text and images.
The multi-modal module fuses fine-grained features, taking into account coarse-grained features encoded by the CLIP encoder.
arXiv Detail & Related papers (2023-04-03T09:13:59Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Multimodal Fake News Detection with Adaptive Unimodal Representation
Aggregation [28.564442206829625]
AURA is a multimodal fake news detection network with adaptive unimodal representation aggregation.
We perform coarse-level fake news detection and cross-modal cosistency learning according to the unimodal and multimodal representations.
Experiments on Weibo and Gossipcop prove that AURA can successfully beat several state-of-the-art FND schemes.
arXiv Detail & Related papers (2022-06-12T14:06:55Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
This work introduces Multi-Policy Statement Checker (MPSC), a framework that automates fake news detection.
MPSC uses deep learning techniques to analyze a statement itself and its related news articles, predicting whether it is seemingly credible or suspicious.
arXiv Detail & Related papers (2022-06-01T21:25:21Z) - Weakly Aligned Feature Fusion for Multimodal Object Detection [52.15436349488198]
multimodal data often suffer from the position shift problem, i.e., the image pair is not strictly aligned.
This problem makes it difficult to fuse multimodal features and puzzles the convolutional neural network (CNN) training.
In this article, we propose a general multimodal detector named aligned region CNN (AR-CNN) to tackle the position shift problem.
arXiv Detail & Related papers (2022-04-21T02:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.