論文の概要: Annotating References to Mythological Entities in French Literature
- arxiv url: http://arxiv.org/abs/2412.18270v1
- Date: Tue, 24 Dec 2024 08:29:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:16.591647
- Title: Annotating References to Mythological Entities in French Literature
- Title(参考訳): フランス文学における神話的存在について
- Authors: Thierry Poibeau,
- Abstract要約: 我々は,現代・現代フランス文学におけるローマ神話やギリシア神話の実体に言及するための大型言語モデル (LLM) の関連性を探究する。
LLMは、文学作家による神話的参照の使用に関する解釈的な洞察を提供することができることを示す。
- 参考スコア(独自算出の注目度): 6.048967716428702
- License:
- Abstract: In this paper, we explore the relevance of large language models (LLMs) for annotating references to Roman and Greek mythological entities in modern and contemporary French literature. We present an annotation scheme and demonstrate that recent LLMs can be directly applied to follow this scheme effectively, although not without occasionally making significant analytical errors. Additionally, we show that LLMs (and, more specifically, ChatGPT) are capable of offering interpretative insights into the use of mythological references by literary authors. However, we also find that LLMs struggle to accurately identify relevant passages in novels (when used as an information retrieval engine), often hallucinating and generating fabricated examples-an issue that raises significant ethical concerns. Nonetheless, when used carefully, LLMs remain valuable tools for performing annotations with high accuracy, especially for tasks that would be difficult to annotate comprehensively on a large scale through manual methods alone.
- Abstract(参考訳): 本稿では,現代・現代フランス文学におけるローマ神話とギリシア神話の関連性について解説するため,大規模言語モデル(LLMs)の関連性について考察する。
本稿では,この手法を効果的に適用するために,最近のLCMを直接適用できることを実証する。
さらに,LLM(およびより具体的にはChatGPT)は,文学作家による神話的参照の使用に関する解釈的洞察を提供することができることを示した。
しかし、LLMは、小説(情報検索エンジンとして使われる場合)の関連パスを正確に特定するのに苦労しており、しばしば、創作例を幻覚させ、生成させることは、重大な倫理的懸念を引き起こす問題である。
それにもかかわらず、慎重に使用すると、特に手作業だけで大規模に注釈を付けるのが難しくなるタスクに対して、LDMは高い精度でアノテーションを実行するための貴重なツールであり続ける。
関連論文リスト
- Should You Use Your Large Language Model to Explore or Exploit? [55.562545113247666]
探索・探索トレードオフに直面した意思決定エージェントを支援するために,大規模言語モデルの能力を評価する。
現在のLLMは、しばしば利用に苦労するが、小規模タスクのパフォーマンスを大幅に改善するために、コンテキスト内緩和が用いられる可能性がある。
論文 参考訳(メタデータ) (2025-01-31T23:42:53Z) - Are LLMs Good Literature Review Writers? Evaluating the Literature Review Writing Ability of Large Language Models [2.048226951354646]
本稿では,大規模言語モデルの文献レビュー作成能力を自動評価するフレームワークを提案する。
我々は,3つのタスク(参照の生成,要約の執筆,文献レビューの執筆)でLLMの性能を評価する。
論文 参考訳(メタデータ) (2024-12-18T08:42:25Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
本稿では,人間が理解し易いが,理解し難い文を含むFaLlacy Understanding Benchmark (FLUB)を提案する。
具体的には、FLUBが焦点を絞ったcunningテキストは、主に、実際のインターネット環境から収集されたトリッキーでユーモラスで誤解を招くテキストで構成されている。
FLUBに基づいて,複数の代表および先進LLMの性能について検討する。
論文 参考訳(メタデータ) (2024-02-16T22:12:53Z) - Best Practices for Text Annotation with Large Language Models [11.421942894219901]
LLM(Large Language Models)は、新しいテキストアノテーションの時代を担っている。
本稿では, 信頼性, 再現性, 倫理的利用に関する包括的基準とベストプラクティスを提案する。
論文 参考訳(メタデータ) (2024-02-05T15:43:50Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - MAGNIFICo: Evaluating the In-Context Learning Ability of Large Language
Models to Generalize to Novel Interpretations [37.13707912132472]
人間は言語表現に新しい解釈を割り当てる素晴らしい能力を持っている。
大きな言語モデル(LLM)は知識の切り離しを持ち、何度も微調整を繰り返すのに費用がかかる。
我々は,LLMが文脈内学習を用いて新しい解釈を習得する能力を体系的に分析する。
論文 参考訳(メタデータ) (2023-10-18T00:02:38Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
大規模言語モデル(LLM)は、個人が様々な種類のコンテンツを書くのを支援する効果的なツールとして最近登場した。
本稿では, LLM 生成した参照文字の性別バイアスについて批判的に検討する。
論文 参考訳(メタデータ) (2023-10-13T16:12:57Z) - Using Large Language Models for Qualitative Analysis can Introduce
Serious Bias [0.09208007322096534]
大規模言語モデル(LLM)は急速に普及しつつあるが、社会科学研究の意義はまだよく分かっていない。
本稿では, バングラデシュのコックス・バザールにおけるロヒンギャ難民へのインタビューの書き起こしを応用して, オープンエンドインタビューから大規模Nの質的データを分析する上で, LLMが有効かどうかを問う。
LLMを使ってテキストに注釈を付けるには、誤解を招く可能性のあるバイアスを導入するリスクがあるため、非常に注意が必要であることが分かりました。
論文 参考訳(メタデータ) (2023-09-29T11:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。