M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
- URL: http://arxiv.org/abs/2412.18299v1
- Date: Tue, 24 Dec 2024 09:06:58 GMT
- Title: M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
- Authors: Jiaxin Guo, Daimeng Wei, Yuanchang Luo, Shimin Tao, Hengchao Shang, Zongyao Li, Shaojun Li, Jinlong Yang, Zhanglin Wu, Zhiqiang Rao, Hao Yang,
- Abstract summary: This paper presents a novel multi-prompt ensemble decoding approach designed to bolster the generation quality of Large Language Models.<n>Given a unique input $X$, we submit $n$ variations of prompts with $X$ to LLMs in batch mode to decode and derive probability distributions.<n>For each token prediction, we calculate the ensemble probability by averaging the $n$ probability distributions within the batch, utilizing this aggregated probability to generate the token.
- Score: 12.96619003056978
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the widespread application of Large Language Models (LLMs) in the field of Natural Language Processing (NLP), enhancing their performance has become a research hotspot. This paper presents a novel multi-prompt ensemble decoding approach designed to bolster the generation quality of LLMs by leveraging the aggregation of outcomes from multiple prompts. Given a unique input $X$, we submit $n$ variations of prompts with $X$ to LLMs in batch mode to decode and derive probability distributions. For each token prediction, we calculate the ensemble probability by averaging the $n$ probability distributions within the batch, utilizing this aggregated probability to generate the token. This technique is dubbed Inner-Batch Ensemble. To facilitate efficient batch inference, we implement a Left-Padding strategy to maintain uniform input lengths across the n prompts. Through extensive experimentation on diverse NLP tasks, including machine translation, code generation, and text simplification, we demonstrate the efficacy of our method in enhancing LLM performance. The results show substantial improvements in BLEU scores, pass@$k$ rates, and LENS metrics over conventional methods.
Related papers
- Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
Next-token distribution outputs offer a theoretically appealing approach for detection of large language models (LLMs)
We propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length.
PAWN shows competitive and even better performance in-distribution than the strongest baselines with a fraction of their trainable parameters.
arXiv Detail & Related papers (2025-01-07T17:00:49Z) - Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models [6.467840081978855]
multimodal large language models (MM-LLMs) have achieved significant success in various tasks.
Main computational burden arises from processingd text and visual tokens.
We propose a dynamic pruning algorithm that identifies the inflection point in the visual CLS token similarity curve.
arXiv Detail & Related papers (2024-09-02T10:49:10Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - PEDAL: Enhancing Greedy Decoding with Large Language Models using Diverse Exemplars [1.450405446885067]
Self-ensembling techniques with diverse reasoning paths have demonstrated remarkable performance gains in text generation with Large Language Models (LLMs)
We introduce PEDAL, a hybrid self-ensembling approach that combines the strengths of diverse exemplar based prompts and LLM based aggregation to achieve improvement in overall performance.
arXiv Detail & Related papers (2024-08-16T17:54:09Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs [4.122612309805664]
Large Language Models (LLMs) generate text by sampling the next token from a probability distribution over the vocabulary at each decoding step.
We propose min-p sampling, a dynamic truncation method that adjusts the sampling threshold based on the model's confidence by scaling according to the top token's probability.
We conduct extensive experiments on benchmarks including GPQA, GSM8K, and AlpacaEval Creative Writing, demonstrating that min-p sampling improves both the quality and diversity of generated text, particularly at high temperatures.
arXiv Detail & Related papers (2024-07-01T08:37:25Z) - Ensemble Learning for Heterogeneous Large Language Models with Deep Parallel Collaboration [39.35476224845088]
Large language models (LLMs) exhibit complementary strengths in various tasks, motivating the research of LLM ensembling.
We propose a training-free ensemble framework DeePEn, fusing the informative probability distributions yielded by different LLMs at each decoding step.
arXiv Detail & Related papers (2024-04-19T08:52:22Z) - Bridging the Gap between Different Vocabularies for LLM Ensemble [10.669552498083709]
vocabulary discrepancies among various large language models (LLMs) have constrained previous studies.
We propose a novel method to Ensemble LLMs via Vocabulary Alignment (EVA)
EVA bridges the lexical gap among various LLMs, enabling meticulous ensemble at each generation step.
arXiv Detail & Related papers (2024-04-15T06:28:20Z) - TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models [69.49978333446538]
TEAL is an approach to treat the input from any modality as a token sequence.
It embeds the token sequence into a joint embedding space with a learnable embedding matrix.
Experiments show that TEAL achieves substantial improvements in multi-modal understanding.
arXiv Detail & Related papers (2023-11-08T10:34:16Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes [54.13559879916708]
EVAPORATE is a prototype system powered by large language models (LLMs)
Code synthesis is cheap, but far less accurate than directly processing each document with the LLM.
We propose an extended code implementation, EVAPORATE-CODE+, which achieves better quality than direct extraction.
arXiv Detail & Related papers (2023-04-19T06:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.