Underwater Image Restoration via Polymorphic Large Kernel CNNs
- URL: http://arxiv.org/abs/2412.18459v1
- Date: Tue, 24 Dec 2024 14:32:27 GMT
- Title: Underwater Image Restoration via Polymorphic Large Kernel CNNs
- Authors: Xiaojiao Guo, Yihang Dong, Xuhang Chen, Weiwen Chen, Zimeng Li, FuChen Zheng, Chi-Man Pun,
- Abstract summary: Underwater Image Restoration (UIR) remains a challenging task in computer vision due to the complex degradation of images in underwater environments.
We introduce UIR-Poly Kernel, a novel method for underwater image restoration that leverages Polymorphic Large Kernel CNNs.
Our results show that well-designed pure CNN architectures can effectively compete with more complex models.
- Score: 27.3614759555859
- License:
- Abstract: Underwater Image Restoration (UIR) remains a challenging task in computer vision due to the complex degradation of images in underwater environments. While recent approaches have leveraged various deep learning techniques, including Transformers and complex, parameter-heavy models to achieve significant improvements in restoration effects, we demonstrate that pure CNN architectures with lightweight parameters can achieve comparable results. In this paper, we introduce UIR-PolyKernel, a novel method for underwater image restoration that leverages Polymorphic Large Kernel CNNs. Our approach uniquely combines large kernel convolutions of diverse sizes and shapes to effectively capture long-range dependencies within underwater imagery. Additionally, we introduce a Hybrid Domain Attention module that integrates frequency and spatial domain attention mechanisms to enhance feature importance. By leveraging the frequency domain, we can capture hidden features that may not be perceptible to humans but are crucial for identifying patterns in both underwater and on-air images. This approach enhances the generalization and robustness of our UIR model. Extensive experiments on benchmark datasets demonstrate that UIR-PolyKernel achieves state-of-the-art performance in underwater image restoration tasks, both quantitatively and qualitatively. Our results show that well-designed pure CNN architectures can effectively compete with more complex models, offering a balance between performance and computational efficiency. This work provides new insights into the potential of CNN-based approaches for challenging image restoration tasks in underwater environments. The code is available at \href{https://github.com/CXH-Research/UIR-PolyKernel}{https://github.com/CXH-Research/UIR-PolyKernel}.
Related papers
- UniUIR: Considering Underwater Image Restoration as An All-in-One Learner [49.35128836844725]
We propose a Universal Underwater Image Restoration method, termed as UniUIR.
To decouple degradation-specific issues and explore the inter-correlations among various degradations in UIR task, we designed the Mamba Mixture-of-Experts module.
This module extracts degradation prior information in both spatial and frequency domains, and adaptively selects the most appropriate task-specific prompts.
arXiv Detail & Related papers (2025-01-22T16:10:42Z) - Underwater Image Enhancement using Generative Adversarial Networks: A Survey [1.2582887633807602]
Generative Adversarial Networks (GANs) have emerged as a powerful tool for enhancing underwater photos.
GANs have been applied to real-world applications, including marine biology and ecosystem monitoring, coral reef health assessment, underwater archaeology, and autonomous underwater vehicle (AUV) navigation.
This paper explores all major approaches to underwater image enhancement, from physical and physics-free models to CNN-based models and state-of-the-art GAN-based methods.
arXiv Detail & Related papers (2025-01-10T06:41:19Z) - Blind Underwater Image Restoration using Co-Operational Regressor Networks [15.853520058218042]
We propose a novel machine learning model, Co-Operational Regressor Networks (CoRe-Nets)
A CoRe-Net consists of two co-operating networks: the Apprentice Regressor (AR), responsible for image transformation, and the Master Regressor (MR), which evaluates the Peak Signal-to-Noise Ratio (PSNR) of the images generated by the AR and feeds it back to AR.
Our results and the optimized PyTorch implementation of the proposed approach are now publicly shared on GitHub.
arXiv Detail & Related papers (2024-12-05T09:15:21Z) - Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques [0.0]
The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach.
In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results.
arXiv Detail & Related papers (2024-10-18T08:40:26Z) - UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
Underwater image enhancement (UIE) plays a crucial role in various marine applications.
Current learning-based approaches frequently lack explicit prior knowledge about the physical processes involved in underwater image formation.
This paper proposes a novel deep unfolding network (DUN) for UIE that integrates color priors and inter-stage feature incorporation.
arXiv Detail & Related papers (2024-08-20T08:48:33Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics.
We develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model.
We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks.
arXiv Detail & Related papers (2022-11-19T07:50:34Z) - Image Super-resolution with An Enhanced Group Convolutional Neural
Network [102.2483249598621]
CNNs with strong learning abilities are widely chosen to resolve super-resolution problem.
We present an enhanced super-resolution group CNN (ESRGCNN) with a shallow architecture.
Experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR performance, complexity, execution speed, image quality evaluation and visual effect in SISR.
arXiv Detail & Related papers (2022-05-29T00:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.