論文の概要: An Overview and Discussion of the Suitability of Existing Speech Datasets to Train Machine Learning Models for Collective Problem Solving
- arxiv url: http://arxiv.org/abs/2412.18489v1
- Date: Tue, 24 Dec 2024 15:22:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:10.771467
- Title: An Overview and Discussion of the Suitability of Existing Speech Datasets to Train Machine Learning Models for Collective Problem Solving
- Title(参考訳): 集団問題解決のための機械学習モデル学習における既存の音声データセットの適合性に関する概観と考察
- Authors: Gnaneswar Villuri, Alex Doboli,
- Abstract要約: このレポートは、新しい機械学習モデルを考案するための既存のデータセットの適合性を特徴としている。
本報告では,音声言語理解のために開発されたデータセット群の解析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This report characterized the suitability of existing datasets for devising new Machine Learning models, decision making methods, and analysis algorithms to improve Collaborative Problem Solving and then enumerated requirements for future datasets to be devised. Problem solving was assumed to be performed in teams of about three, four members, which talked to each other. A dataset consists of the speech recordings of such teams. The characterization methodology was based on metrics that capture cognitive, social, and emotional activities and situations. The report presented the analysis of a large group of datasets developed for Spoken Language Understanding, a research area with some similarity to Collaborative Problem Solving.
- Abstract(参考訳): 本報告では、新しい機械学習モデル、意思決定方法、分析アルゴリズムを考案するための既存のデータセットの適合性を特徴とし、協調問題解決を改善し、将来のデータセットの要件を列挙した。
問題解決は3人、4人のチームで行われ、互いに話し合った。
データセットは、そのようなチームの音声記録からなる。
キャラクタリゼーションの方法論は、認知、社会的、感情的な活動や状況を捉える指標に基づいていた。
本報告では,協調的問題解決に類似した研究領域である音声言語理解のための大規模なデータセット群の解析を行った。
関連論文リスト
- XAI-FUNGI: Dataset resulting from the user study on comprehensibility of explainable AI algorithms [5.775094401949666]
本稿では、説明可能な人工知能(XAI)アルゴリズムの理解度に関するユーザ研究の結果であるデータセットを紹介する。
研究参加者は149人の候補者から募集され, 菌学領域の専門家を代表する3つのグループを結成した。
データセットの主な部分には39のインタビュー書が含まれており、参加者は、食べられるキノコと食べられないキノコを区別するために訓練された機械学習モデルの意思決定の解釈に関する一連のタスクと質問を完了するよう求められた。
論文 参考訳(メタデータ) (2024-10-21T11:37:58Z) - Text2Analysis: A Benchmark of Table Question Answering with Advanced
Data Analysis and Unclear Queries [67.0083902913112]
高度な解析タスクを取り入れたText2Analysisベンチマークを開発した。
また,5つのイノベーティブかつ効果的なアノテーション手法を開発した。
3つの異なる指標を用いて5つの最先端モデルを評価する。
論文 参考訳(メタデータ) (2023-12-21T08:50:41Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
本稿では,対話型質問応答における数値推論の連鎖を研究するために,新しい大規模データセットConvFinQAを提案する。
我々のデータセットは、現実世界の会話において、長距離で複雑な数値推論パスをモデル化する上で大きな課題となる。
論文 参考訳(メタデータ) (2022-10-07T23:48:50Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Adaptive Sampling Strategies to Construct Equitable Training Datasets [0.7036032466145111]
コンピュータビジョンから自然言語処理までの領域では、機械学習モデルがスタークの相違を示すことが示されている。
これらのパフォーマンスギャップに寄与する要因の1つは、モデルがトレーニングしたデータに表現力の欠如である。
公平なトレーニングデータセットを作成する際の問題を形式化し、この問題に対処するための統計的枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-31T19:19:30Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - When Can Models Learn From Explanations? A Formal Framework for
Understanding the Roles of Explanation Data [84.87772675171412]
個々のデータポイントの説明がモデリング性能を向上させる状況について検討する。
e-SNLI、TACRED、SemEvalの3つの既存のデータセットを使って説明します。
論文 参考訳(メタデータ) (2021-02-03T18:57:08Z) - Sampling Approach Matters: Active Learning for Robotic Language
Acquisition [42.69529080098759]
本稿では,複雑性の異なる3つの基礎言語問題に適用した能動的学習手法について検討する。
特徴選択や分類モデルといった設計上の決定とともに,その基礎となる課題の特徴がどのような結果をもたらすかを報告する。
論文 参考訳(メタデータ) (2020-11-16T15:18:10Z) - Analyzing Neural Discourse Coherence Models [17.894463722947542]
本稿では,現在のコヒーレンスモデルが,談話組織におけるテキストの側面をいかに捉えるかを検討する。
文法や意味論の変化に対するコヒーレンスとテストモデルの感度を損なう言語変化の2つのデータセットを考案する。
論文 参考訳(メタデータ) (2020-11-12T10:44:41Z) - Beyond Leaderboards: A survey of methods for revealing weaknesses in
Natural Language Inference data and models [6.998536937701312]
近年、表面的な手がかりのために自然言語推論(NLI)データセットを分析する論文が増えている。
この構造化された調査は、モデルとデータセットの報告された弱点を分類することで、進化する研究領域の概要を提供する。
論文 参考訳(メタデータ) (2020-05-29T17:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。