論文の概要: Mitigating Attrition: Data-Driven Approach Using Machine Learning and Data Engineering
- arxiv url: http://arxiv.org/abs/2502.17865v1
- Date: Tue, 25 Feb 2025 05:29:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:23:58.822881
- Title: Mitigating Attrition: Data-Driven Approach Using Machine Learning and Data Engineering
- Title(参考訳): 試行錯誤: 機械学習とデータエンジニアリングを用いたデータ駆動アプローチ
- Authors: Naveen Edapurath Vijayan,
- Abstract要約: 本稿では、機械学習とデータエンジニアリング技術を用いて、従業員の誘惑を緩和する新しいデータ駆動アプローチを提案する。
提案フレームワークは, 多様な人的資源システムからのデータを統合し, 高度な特徴工学を活用して, 誘惑に影響を及ぼす要因を包括的に把握する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel data-driven approach to mitigating employee attrition using machine learning and data engineering techniques. The proposed framework integrates data from various human resources systems and leverages advanced feature engineering to capture a comprehensive set of factors influencing attrition. The study outlines a robust modeling approach that addresses challenges such as imbalanced datasets, categorical data handling, and model interpretation. The methodology includes careful consideration of training and testing strategies, baseline model establishment, and the development of calibrated predictive models. The research emphasizes the importance of model interpretation using techniques like SHAP values to provide actionable insights for organizations. Key design choices in algorithm selection, hyperparameter tuning, and probability calibration are discussed. This approach enables organizations to proactively identify attrition risks and develop targeted retention strategies, ultimately redu
- Abstract(参考訳): 本稿では、機械学習とデータエンジニアリング技術を用いて、従業員の誘惑を緩和する新しいデータ駆動アプローチを提案する。
提案フレームワークは, 多様な人的資源システムからのデータを統合し, 高度な特徴工学を活用して, 誘惑に影響を及ぼす要因を包括的に把握する。
この研究は、不均衡なデータセット、分類データハンドリング、モデル解釈といった課題に対処する堅牢なモデリングアプローチを概説している。
この方法論には、トレーニングとテスト戦略の慎重に検討、ベースラインモデルの確立、キャリブレーションされた予測モデルの開発が含まれる。
この研究は、組織に実用的な洞察を提供するために、SHAP値のようなテクニックを用いたモデル解釈の重要性を強調している。
アルゴリズム選択、ハイパーパラメータチューニング、確率校正における重要な設計選択について論じる。
このアプローチにより、組織は積極的に誘惑のリスクを特定し、ターゲットの維持戦略を開発でき、最終的にはリユーできる。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches [35.431340001608476]
本稿では,データ拡張とモデルファインチューニングを融合することで,少数ショット学習を向上するための革新的なアプローチを提案する。
薬物発見、ターゲット認識、悪意のあるトラフィック検出などの分野で、小さなサンプルデータによって引き起こされる課題に対処することを目的としている。
その結果,本研究で開発されたMhERGANアルゴリズムは,数発の学習に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-11-25T16:51:11Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - GPT in Data Science: A Practical Exploration of Model Selection [0.7646713951724013]
この研究は、AI意思決定プロセスの理解を深めることにコミットしています。
我々の取り組みは、より透明で理解しやすいAIシステムの構築に向けられている。
論文 参考訳(メタデータ) (2023-11-20T03:42:24Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
フェデレートラーニング(FL)は、分散とプライバシ保護の方法で機械学習モデルをトレーニングするための有望なパラダイムとして登場した。
モデルに使用される手法の選択は、フェデレーション学習システムの性能、収束速度、通信効率、プライバシー保証において重要な役割を果たす。
本研究は,各手法のメリットとデメリットを慎重に比較,分類,記述し,さまざまなFLシナリオに適用性について検討する。
論文 参考訳(メタデータ) (2023-10-31T23:26:58Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Supply of engineering techniques and software design patterns in
psychoanalysis and psychometrics sciences [0.0]
本研究の目的は、心理療法におけるCBT法(認知行動療法)の弱点を改善するために、ソフトウェア技術、モデル、人工知能アルゴリズムを導入することである。
本研究の目的は、隠れた人間の変数が検査結果から推測される心理測定実験の実装である。
論文 参考訳(メタデータ) (2021-08-16T08:36:37Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。