論文の概要: Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models
- arxiv url: http://arxiv.org/abs/2308.01594v1
- Date: Thu, 3 Aug 2023 07:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-04 14:57:25.426545
- Title: Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models
- Title(参考訳): 拡散モデルを用いた基準自由等方性3次元EM再構成
- Authors: Kyungryun Lee and Won-Ki Jeong
- Abstract要約: 本稿では、参照データや劣化過程に関する事前知識の制限を克服する拡散モデルに基づくフレームワークを提案する。
提案手法では, 2次元拡散モデルを用いて連続的に3次元ボリュームを再構成し, 高精度なサンプルデータに適している。
- 参考スコア(独自算出の注目度): 8.590026259176806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electron microscopy (EM) images exhibit anisotropic axial resolution due to
the characteristics inherent to the imaging modality, presenting challenges in
analysis and downstream tasks.In this paper, we propose a diffusion-model-based
framework that overcomes the limitations of requiring reference data or prior
knowledge about the degradation process. Our approach utilizes 2D diffusion
models to consistently reconstruct 3D volumes and is well-suited for highly
downsampled data. Extensive experiments conducted on two public datasets
demonstrate the robustness and superiority of leveraging the generative prior
compared to supervised learning methods. Additionally, we demonstrate our
method's feasibility for self-supervised reconstruction, which can restore a
single anisotropic volume without any training data.
- Abstract(参考訳): 電子顕微鏡(em)画像は,画像モダリティ特性に起因する異方性軸分解能を示し,解析や下流課題の課題を提示する。本稿では,参照データや劣化過程に関する事前知識を必要とする限界を克服する拡散モデルに基づくフレームワークを提案する。
提案手法は2次元拡散モデルを用いて連続的に3次元ボリュームを再構成し,高精度なサンプルデータに適している。
2つの公開データセットで実施された大規模な実験は、教師付き学習法と比較して、生成前の堅牢性と優位性を示す。
また,本手法は,トレーニングデータなしで1つの異方性ボリュームを復元できる自己教師あり再構成の実現可能性を示す。
関連論文リスト
- SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
本研究では3次元地震データに適した新しい拡散モデル再構成フレームワークを提案する。
拡散モデルに3次元ニューラルネットワークアーキテクチャを導入し、2次元拡散モデルを3次元空間に拡張することに成功した。
本手法は、フィールドデータセットと合成データセットの両方に適用した場合、より優れた再構成精度を示す。
論文 参考訳(メタデータ) (2024-03-18T05:10:13Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
2次元から3次元への次元展開は、現在の技術的観点から非常に難しい逆問題と見なされている。
U-netのマルチスケール特性とGANの生成能力を統合する新しい生成モデルが提案されている。
さらに、画像正規化損失とワッサーシュタイン距離損失を組み合わせることにより、モデルの精度をさらに向上する。
論文 参考訳(メタデータ) (2024-02-24T13:42:34Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Spectral Image
Reconstruction [19.1301471218022]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction [74.49121940466675]
モノクローナルハンドヘルドオブジェクト再構成のためのCentroid-fixed dual-stream conditionalfusionを導入する。
まず、対象のセントロイドがずれることを避けるために、手動制約付きセントロイド固定パラダイムを用いる。
第2に、意味的および幾何学的に手動物体の相互作用をモデル化するための二重ストリームデノイザを導入する。
論文 参考訳(メタデータ) (2023-11-23T20:14:50Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - DiffuseIR:Diffusion Models For Isotropic Reconstruction of 3D
Microscopic Images [20.49786054144047]
拡散モデルに基づく等方的再構成の教師なし手法であるDiffuseIRを提案する。
まず,側方顕微鏡画像から生体組織の構造分布を学習するために,拡散モデルの事前学習を行う。
次に、低軸分解能顕微鏡画像を用いて拡散モデルの生成過程を定式化し、高軸分解能再構成結果を生成する。
論文 参考訳(メタデータ) (2023-06-21T08:49:28Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
我々は,限られた入力画像のみを用いて,スパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
具体的には,少数視点再構成によるノイズ画像から高品質な擬似観測へ変換する,偽拡散モデルを提案する。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
論文 参考訳(メタデータ) (2023-05-24T14:00:32Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D対応画像合成は、シーン生成や画像からの新規ビュー合成など、様々なタスクを含む。
本稿では,様々な物体の多視点画像から,ニューラルラディアンス場(NeRF)の一般化可能な事前学習を行うために,表現拡散モデルを用いた統一的アプローチであるSSDNeRFを提案する。
論文 参考訳(メタデータ) (2023-04-13T17:59:01Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
拡散モデルは、高品質なサンプルを持つ新しい最先端の生成モデルとして登場した。
そこで本研究では, モデルに基づく2次元拡散を, 全次元にわたるコヒーレントな再構成を達成できるように, 実験時の残りの方向で先行する2次元拡散を拡大することを提案する。
提案手法は,1つのコモディティGPU上で動作可能であり,新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-11-19T10:32:21Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。