論文の概要: Text-Driven Tumor Synthesis
- arxiv url: http://arxiv.org/abs/2412.18589v1
- Date: Tue, 24 Dec 2024 18:43:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:11.670810
- Title: Text-Driven Tumor Synthesis
- Title(参考訳): テキスト駆動型腫瘍合成
- Authors: Xinran Li, Yi Shuai, Chen Liu, Qi Chen, Qilong Wu, Pengfei Guo, Dong Yang, Can Zhao, Pedro R. A. S. Bassi, Daguang Xu, Kang Wang, Yang Yang, Alan Yuille, Zongwei Zhou,
- Abstract要約: 腫瘍合成はAIがしばしば見逃したり過剰に検出したりする例を生成することができる。
既存の合成法では、特定の腫瘍特性に対する制御性が欠如している。
我々はTextoMorphと呼ばれる新しいテキスト駆動型腫瘍合成手法を提案する。
- 参考スコア(独自算出の注目度): 28.654516965292444
- License:
- Abstract: Tumor synthesis can generate examples that AI often misses or over-detects, improving AI performance by training on these challenging cases. However, existing synthesis methods, which are typically unconditional -- generating images from random variables -- or conditioned only by tumor shapes, lack controllability over specific tumor characteristics such as texture, heterogeneity, boundaries, and pathology type. As a result, the generated tumors may be overly similar or duplicates of existing training data, failing to effectively address AI's weaknesses. We propose a new text-driven tumor synthesis approach, termed TextoMorph, that provides textual control over tumor characteristics. This is particularly beneficial for examples that confuse the AI the most, such as early tumor detection (increasing Sensitivity by +8.5%), tumor segmentation for precise radiotherapy (increasing DSC by +6.3%), and classification between benign and malignant tumors (improving Sensitivity by +8.2%). By incorporating text mined from radiology reports into the synthesis process, we increase the variability and controllability of the synthetic tumors to target AI's failure cases more precisely. Moreover, TextoMorph uses contrastive learning across different texts and CT scans, significantly reducing dependence on scarce image-report pairs (only 141 pairs used in this study) by leveraging a large corpus of 34,035 radiology reports. Finally, we have developed rigorous tests to evaluate synthetic tumors, including Text-Driven Visual Turing Test and Radiomics Pattern Analysis, showing that our synthetic tumors is realistic and diverse in texture, heterogeneity, boundaries, and pathology.
- Abstract(参考訳): 腫瘍合成はAIがしばしば見逃したり過剰に検出したりする例を生成し、これらの困難なケースをトレーニングすることでAIのパフォーマンスを向上させることができる。
しかし、既存の合成法は、通常無条件で、ランダムな変数から画像を生成するか、または腫瘍の形状によってのみ条件付けされるが、テクスチャ、不均一性、境界、病理型といった特定の腫瘍特性に対する制御性に欠ける。
その結果、生成された腫瘍は、既存のトレーニングデータの過剰な類似または重複であり、AIの弱点に効果的に対処できない可能性がある。
本研究では,テキスト駆動型腫瘍合成手法であるTextoMorphを提案する。
これは、早期の腫瘍検出(感度+8.5%)、精密放射線治療のための腫瘍セグメンテーション(DSC+6.3%)、良性腫瘍と悪性腫瘍の分類(感度+8.2%)など、AIを最も混乱させる例に特に有用である。
放射線学報告から抽出したテキストを合成プロセスに組み込むことで、AIの故障事例をより正確に対象とする合成腫瘍の多様性と制御性を高めることができる。
さらに、TextoMorphは、異なるテキストやCTスキャンのコントラスト学習を使用し、34,035の大規模なコーパスを利用して、画像レポートの少ないペア(この研究で使用されるのは141ペアのみ)への依存を著しく低減する。
最後に, テクスチャ, ヘテロジニティ, 境界, 病理学において, テキスト駆動型視覚チューリングテストや放射能パターン解析など, 人工腫瘍を評価するための厳密な試験を開発した。
関連論文リスト
- Analyzing Tumors by Synthesis [11.942932753828854]
腫瘍合成は、腫瘍検出とセグメンテーションのためのAIトレーニングを支援するために、医療画像に多数の腫瘍例を生成する。
この章では、実データと合成データに関するAI開発についてレビューする。
ケーススタディによると、合成腫瘍で訓練されたAIは、実際のデータで訓練されたAIに匹敵する、あるいはそれ以上のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-09-09T19:51:44Z) - FreeTumor: Advance Tumor Segmentation via Large-Scale Tumor Synthesis [7.064154713491736]
FreeTumorは、堅牢な腫瘍合成とセグメンテーションのための堅牢なソリューションである。
合成トレーニングでは、敵のトレーニング戦略を使用して、大規模で多種多様なラベル付きデータを活用している。
FreeTumorでは,腫瘍セグメント化におけるデータスケーリングの法則について,データセットを1万1千件までスケールアップすることで検討する。
論文 参考訳(メタデータ) (2024-06-03T12:27:29Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - From Pixel to Cancer: Cellular Automata in Computed Tomography [12.524228287083888]
腫瘍合成は、医療画像に人工腫瘍を作ろうとする。
本稿では腫瘍発生をシミュレートする汎用ルールのセットを確立する。
我々は,腫瘍状態をCT画像に統合し,異なる臓器にまたがる合成腫瘍を生成する。
論文 参考訳(メタデータ) (2024-03-11T06:46:31Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
腫瘍合成は、医用画像における人工腫瘍の作成を可能にし、腫瘍の検出とセグメンテーションのためのAIモデルのトレーニングを容易にする。
本論文は, 臨界観察を生かして, 一般化可能な腫瘍合成に向けて進歩的な一歩を踏み出した。
私たちは、Diffusion Modelsのような生成AIモデルが、単一の臓器から限られた数の腫瘍例を訓練しても、様々な臓器に一般化された現実的な腫瘍を作成できることを確認した。
論文 参考訳(メタデータ) (2024-02-29T18:57:39Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Label-Free Liver Tumor Segmentation [10.851067782021902]
我々は, 合成腫瘍をCTスキャンで使用することにより, 手動によるアノテーションを必要とせずに, 肝腫瘍を正確に分類できることを示した。
私たちの合成腫瘍には、現実的な形状とテクスチャという、2つの興味深い利点があります。
私たちの合成腫瘍は、小さな(あるいは小さな)合成腫瘍の多くの例を自動的に生成することができます。
論文 参考訳(メタデータ) (2023-03-27T01:22:12Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
ヒトの読者や放射線医は、臨床実践において、全身多臓器多臓器の検出と診断を日常的に行う。
ほとんどの医療用AIシステムは、いくつかの疾患のリストの狭い単一の臓器に焦点を当てて構築されている。
CancerUniT は、マルチ腫瘍予測の出力を持つクエリベースの Mask Transformer モデルである。
論文 参考訳(メタデータ) (2023-01-28T20:09:34Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。