Pruning Unrolled Networks (PUN) at Initialization for MRI Reconstruction Improves Generalization
- URL: http://arxiv.org/abs/2412.18668v1
- Date: Tue, 24 Dec 2024 20:01:52 GMT
- Title: Pruning Unrolled Networks (PUN) at Initialization for MRI Reconstruction Improves Generalization
- Authors: Shijun Liang, Evan Bell, Avrajit Ghosh, Saiprasad Ravishankar,
- Abstract summary: In this study, we demonstrate that pruning deep image reconstruction networks at training time can improve their robustness to distribution shifts.
Our experiments demonstrate that when compared to traditional dense networks, PUN offers improved generalization across a variety of experimental settings.
- Score: 7.584719124076339
- License:
- Abstract: Deep learning methods are highly effective for many image reconstruction tasks. However, the performance of supervised learned models can degrade when applied to distinct experimental settings at test time or in the presence of distribution shifts. In this study, we demonstrate that pruning deep image reconstruction networks at training time can improve their robustness to distribution shifts. In particular, we consider unrolled reconstruction architectures for accelerated magnetic resonance imaging and introduce a method for pruning unrolled networks (PUN) at initialization. Our experiments demonstrate that when compared to traditional dense networks, PUN offers improved generalization across a variety of experimental settings and even slight performance gains on in-distribution data.
Related papers
- Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.
We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.
Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
arXiv Detail & Related papers (2025-01-07T12:29:32Z) - Magnetic Resonance Image Processing Transformer for General Accelerated Image Reconstruction [2.7802624923496353]
We introduce the Magnetic Resonance Image Processing Transformer (MR-IPT), a ViT-based framework designed to enhance the generalizability and robustness of accelerated MRI reconstruction.
By leveraging a shared transformer backbone, MR-IPT effectively learns universal feature representations, allowing it to generalize across diverse reconstruction tasks.
Our findings suggest that transformer-based general models can significantly advance MRI reconstruction, offering improved adaptability and stability compared to traditional deep learning approaches.
arXiv Detail & Related papers (2024-05-23T23:13:02Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
We study how DIP recovers information from undersampled imaging measurements.
We introduce a self-driven reconstruction process that concurrently optimize both the network weights and the input.
Our method incorporates a novel denoiser regularization term which enables robust and stable joint estimation of both the network input and reconstructed image.
arXiv Detail & Related papers (2024-02-06T15:52:23Z) - Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences [0.0]
In this work, we apply double deep Q-learning and REINFORCE algorithms to learn the sampling strategy for dynamic image reconstruction.
We consider the data in the format of time series, and the reconstruction method is a pre-trained autoencoder-typed neural network.
We present a proof of concept that reinforcement learning algorithms are effective to discover the optimal sampling pattern.
arXiv Detail & Related papers (2023-08-28T23:55:23Z) - Invertible Sharpening Network for MRI Reconstruction Enhancement [17.812760964428165]
We propose an invertible sharpening network (InvSharpNet) to improve the visual quality of MRI reconstructions.
Unlike the traditional methods that learn to map the input data to the ground truth, InvSharpNet adapts a backward training strategy that learns a blurring transform.
Experiments on various MRI datasets demonstrate that InvSharpNet can improve reconstruction sharpness with few artifacts.
arXiv Detail & Related papers (2022-06-06T18:21:48Z) - Adaptive Local Neighborhood-based Neural Networks for MR Image Reconstruction from Undersampled Data [6.82469220191368]
Recent works have shown significant promise for reconstructing MR images from sparsely sampled k-space data using deep learning.
In this work, we propose a technique that rapidly estimates deep neural networks directly at reconstruction time by fitting them on small adaptively estimated neighborhoods of a training set.
Our results demonstrate that our proposed locally-trained method produces higher-quality reconstructions compared to models trained globally on larger datasets as well as other scan-adaptive methods.
arXiv Detail & Related papers (2022-06-01T21:37:03Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
The thick-slice magnetic resonance (MR) images are often structurally blurred in coronal and sagittal views.
Deep learning has shown great potential to re-construct the high-resolution (HR) thin-slice MR images from those low-resolution (LR) cases.
We propose a novel Two-stage Self-supervised Cycle-consistency Network (TSCNet) for MR slice reconstruction.
arXiv Detail & Related papers (2021-06-29T13:29:18Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.