Position-aware Graph Transformer for Recommendation
- URL: http://arxiv.org/abs/2412.18731v1
- Date: Wed, 25 Dec 2024 01:22:35 GMT
- Title: Position-aware Graph Transformer for Recommendation
- Authors: Jiajia Chen, Jiancan Wu, Jiawei Chen, Chongming Gao, Yong Li, Xiang Wang,
- Abstract summary: We propose a new graph transformer (GT) framework -- textitPosition-aware Graph Transformer for Recommendation (PGTR)
The key insight is to explicitly incorporate node position and structure information from the user-item interaction graph into GT architecture.
Empirical studies demonstrate the effectiveness of the proposed PGTR method when implemented on various GCN-based backbones across four real-world datasets.
- Score: 13.448664870389722
- License:
- Abstract: Collaborative recommendation fundamentally involves learning high-quality user and item representations from interaction data. Recently, graph convolution networks (GCNs) have advanced the field by utilizing high-order connectivity patterns in interaction graphs, as evidenced by state-of-the-art methods like PinSage and LightGCN. However, one key limitation has not been well addressed in existing solutions: capturing long-range collaborative filtering signals, which are crucial for modeling user preference. In this work, we propose a new graph transformer (GT) framework -- \textit{Position-aware Graph Transformer for Recommendation} (PGTR), which combines the global modeling capability of Transformer blocks with the local neighborhood feature extraction of GCNs. The key insight is to explicitly incorporate node position and structure information from the user-item interaction graph into GT architecture via several purpose-designed positional encodings. The long-range collaborative signals from the Transformer block are then combined linearly with the local neighborhood features from the GCN backbone to enhance node embeddings for final recommendations. Empirical studies demonstrate the effectiveness of the proposed PGTR method when implemented on various GCN-based backbones across four real-world datasets, and the robustness against interaction sparsity as well as noise.
Related papers
- Hypergraph Diffusion for High-Order Recommender Systems [5.71357784811215]
We introduce WaveHDNN, an innovative wavelet-enhanced hypergraph diffusion framework.
WaveHDNN integrates a Heterophily-aware Collaborative, designed to capture user-item interactions across diverse categories, with a Multi-scale Group-wise Structure.
Cross-view contrastive learning is employed to maintain robust and consistent representations.
arXiv Detail & Related papers (2025-01-28T05:59:29Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - APGL4SR: A Generic Framework with Adaptive and Personalized Global
Collaborative Information in Sequential Recommendation [86.29366168836141]
We propose a graph-driven framework, named Adaptive and Personalized Graph Learning for Sequential Recommendation (APGL4SR)
APGL4SR incorporates adaptive and personalized global collaborative information into sequential recommendation systems.
As a generic framework, APGL4SR can outperform other baselines with significant margins.
arXiv Detail & Related papers (2023-11-06T01:33:24Z) - TransGNN: Harnessing the Collaborative Power of Transformers and Graph Neural Networks for Recommender Systems [31.922581157563272]
Graph Neural Networks (GNNs) have emerged as promising solutions for collaborative filtering (CF)
We propose TransGNN, a novel model that integrates Transformer and GNN layers in an alternating fashion to mutually enhance their capabilities.
arXiv Detail & Related papers (2023-08-28T07:03:08Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Long Range Graph Benchmark [32.317725340138104]
MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks.
We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks.
arXiv Detail & Related papers (2022-06-16T13:33:22Z) - Graph Convolutional Embeddings for Recommender Systems [67.5973695167534]
We propose a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
arXiv Detail & Related papers (2021-03-05T10:46:16Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
We develop a new GCN-based Collaborative Filtering model, named Refined Graph convolution Collaborative Filtering(RGCF)
RGCF is more capable for capturing the implicit high-order connectivities inside the graph and the resultant vector representations are more expressive.
We conduct extensive experiments on three public million-size datasets, demonstrating that our RGCF significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2020-07-07T12:26:10Z) - Relation Transformer Network [25.141472361426818]
We propose a novel transformer formulation for scene graph generation and relation prediction.
We leverage the encoder-decoder architecture of the transformer for rich feature embedding of nodes and edges.
Our relation prediction module classifies the directed relation from the learned node and edge embedding.
arXiv Detail & Related papers (2020-04-13T20:47:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.